

MARRI LAXMAN REDDY **INSTITUTE OF TECHNOLOGY AND MANAGEMENT**

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

DEPARTMENT OF MATHEMATICS

Academic Year	2021-22
Year & Semester	I B.Tech I Sem
Regulation	MLRS-R20
Branch	ALL BRANCHES
Course Code	2010001
Course Name	ENGINEERING MATHEMATICS-1
Course Faculty	V.SRINIVASA RAO, A.SUDHAKAR, A.AJAY BABU, M.RAMANUJA, B.SRIDHR REDDY, P.VIJAYA LAKSHMI, M.SATEESH.

	PART-A (SHORT ANSWER QUESTIONS)			
	UNIT-I: MATRICES			
SNO	QUESTION	Course Outcome	Bloom's Taxonomy	
1.	Define symmetric matrix and give an Example.	C01	Remember	
2.	Show that the matrix $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ is orthogonal	C01	Understand	
3.	Prove that the inverse of an orthogonal matrix is orthogonal.	C01	Apply	
4.	Find the rank of the matrix A = $\begin{bmatrix} 2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1 \end{bmatrix}$ by reducing it to Echelon form.	CO1	Understand	
5.	Define Rank of a matrix.	C01	Remember	
6.	Prove that inverse of a non – singular symmetric matrix A is symmetric	C01	Apply	
7.	Find the rank of the matrix $ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 8 & 7 & 0 & 5 \end{bmatrix} $	C01	Apply	
8.	Prove that the matrix $\frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$ is orthogonal	CO1	Apply	
9.	Prove that transpose of an orthogonal matrix is Orthogonal.	C01	Apply	

10.	Find the value of k such that the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & K & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	CO1	Apply
	Express the matrix A as sum of symmetric and skew – symmetric matrices. Where	C01	
11.	$A = \begin{bmatrix} 3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$		Apply
12.	Determine the rank of the given matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$	CO1	Apply
13.	Show that the matrix $A = \begin{bmatrix} 2 & -3 & 1 \\ 4 & 3 & 1 \\ -3 & 1 & 9 \end{bmatrix}$ is orthogonal.	CO1	Remember
14.	If $\begin{bmatrix} 3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$ is symmetric, then find the values of a and b.	CO1	Understand
15.	Predict the value of the rank for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.	C01	Understand
16.	Explain Diagonally dominant Property for non-homogenous system	CO1	Apply
17.	Define Skew-symmetric matrix and give an Example.	CO1	Remember
18.	Define orthogonal matrix and give an Example.	C01	Remember
19.	Prove that product of orthogonal matrices is Orthogonal	C01	Apply
20.	Find the rank of the matrix $ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 8 & 7 & 0 & 5 \end{bmatrix} $	CO1	Understand
	UNIT-II: EIGEN VALUES AND EIGEN VECTOR	S	
SNO	QUESTION	Cour se Outc ome	Bloom's Taxonomy
1.	Find the Eigen values of $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$	CO2	Understand
2.	If λ is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then Prove that λ^{-1} is an Eigen value of A^{-1} and corresponding Eigen vector X itself.	CO2	Understand

3.	State Cayley Hamilton theorem.	CO2	Remember
4.	Find the Sum and Product of the Eigen values of $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.	CO2	Understand
5.	Determine the Characteristic roots of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	CO2	Understand
6.	Are the vectors $\begin{pmatrix} 2\\1\\1 \end{pmatrix} \begin{pmatrix} 2\\0\\-1 \end{pmatrix} \begin{pmatrix} 4\\2\\1 \end{pmatrix}$ Linearly independent?	CO2	Understand
7.	Identify the matrix of the quadratic form $x^2 + 5y^2 + 6xy$.	CO2	Understand
8.	If λ is an Eigen value of a non-singular matrix A, show that $\frac{ A }{\lambda}$ is an Eigen value of the matrix adj(A).	CO2	Understand
9.	Predict the Eigen values of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.	CO2	Understand
10.	Find the sum and product of Eigen values of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$	CO2	Understand
11.	Write the matrix of the quadratic form $2x^2 + 4y^2 + 8xy$.	CO2	Remember
12.	Verify the vectors $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ are Linearly Independent or not?	CO2	Understand
13.	Write the Characteristic equation of $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.	CO2	Remember
14.	Find the sum and product of Eigen values of the matrix $\begin{bmatrix} 2 & -3 \\ 4 & -2 \end{bmatrix}$	CO2	Understand
15.	Prove that a Square matrix A and its transpose A^T have the same Eigen values	CO2	Understand
16.	Identify the matrix of the quadratic form $3x^2 + 6y^2 + 2xy$	CO2	Understand
17.	λ is an eigen value of an orthogonal matrix then $\frac{1}{\lambda}$ is also an eigen value	CO2	Understand
18.	If λ is Eigen value of A then prove that the Eigen value of B = $a_0A^2+a_1A+a_2I$ is $a_0\lambda^2+a_1\lambda+a_2$	CO2	Understand
19.	Suppose that A and P be square matrices of order n such that P is non-singular. Then A and P ⁻¹ AP have the same Eigen values.	CO2	Understand
20.	Prove that the Eigen values of an idempotent matrix are 0 or 1.	CO2	Understand

	UNIT-III: CALCULUS OF SINGLE VARIABLE		
1.	State Lagrange's mean value theorem	CO3	Remember
2.	Verify Roll's mean value theorem for $f(x) = \frac{1}{x^2}$ in [-1, 1].	C03	Understand
3.	Verify Role's theorem for the function $f(x) = \tan x$ in $[0, \pi]$.	C03	Understand
4.	Write the geometrical interpretation of Lagrange's MVT	C03	Remember
5.	State Cauchy's mean value theorem	C03	Remember
6.	Verify Rolle's Theorem for $f(x) = x^2 in [2,3]$	C03	Understand
7.	State Rolle's mean value theorem.	C03	Remember
8.	Explain why mean value theorem does not hold for $f(x) = x^{\frac{2}{3}}$ in (-1, 1).	C03	Understand
9.	Write the geometrical interpretation of Rolle's MVT	C03	Remember
10.	Find $\sqrt[5]{245}$ using mean value theorem.	C03	Understand
11.	State Taylor's Theorem with Lagrange form of remainder.	C03	Remember
12.	State Maclaurin's Theorem with Lagrange form of remainder.	C03	Remember
13.	Prove that $\Gamma(1) = 1$	C03	Understand
14.	Use $\beta - \Gamma$ functions to evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta \cos^{4}\theta d\theta$	C03	Understand
15.	P.T $\beta(m,n) = \beta(n,m)$	C03	Understand
16.	Show that $\Gamma(\frac{1}{2}) = \sqrt{\prod}$	C03	Understand
17.	P.T $\beta(m,n) = 2 \int_{0}^{\frac{1}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$	C03	Understand
18.	Evaluate $\int_{0}^{1} x^{5} (1-x)^{3} dx$	C03	Evaluate
19.	Evaluate $\int_{0}^{1} x^{3} \sqrt{1-x} dx$	CO3	Evaluate
20.	$P.T \int_{0}^{\infty} e^{-y^{y'm}} dy = m\Gamma(m)$	CO3	Understand
	UNIT-IV: MULTIVARIABLE CALCULUS		
1.	Define jacobian and its properties	C04	Remember
2.	Define the functional dependence and independence	C04	Remember
3.	Define the saddle point.	C04	Remember

4.	Find the stationary points of xy+x-y.	CO4	Understand
5.	Write the condition for the maximum and minimum of the function x,y.	CO4	Remember
6.	Write the procedure of Lagrange's method of undetermined multipliers.	CO4	Remember
7.	If u=x+y, v = xy, find $\frac{\partial(u, v)}{\partial(x, y)}$	CO4	Understand
8.		C04	Understand
9.	Find first and second order partial derivatives of $ax^2+2hxy+by^2$ and $verify \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$.	CO4	Understand
10.	Write the relation between the functions u=2x-y+3z ,v=2x-y+z,w=2x-y-z	CO4	Remember
11.	If $x = u(1-v)$, $y = uv$ find J.	CO4	Understand
12.	If u=2x+3 Y^2 V=3 X 232+Y X^2 find the first order partial derivatives w.r.t Y	CO4	Understand
13.	Find the maximum and minimum values of $x^3 + y^3 - 3axy$	CO4	Understand
14.	Prove that JJ′=1	C04	Understand
15.	If $u = e^x \sin y, v = e^x \cos y$ then find. $\frac{\partial(u, v)}{\partial(x, y)}$	CO4	Understand
16.	If $u = x^2 - 2y$, $v = x + y + z$, $w = x - 2y + 3z$ find $\boxed{\frac{\partial(u, v, w)}{\partial(x, y, z)}}$	CO4	Understand
17.	Discuss the max and minimum value of $x^2 + y^2 + 6x + 2y$	CO4	Understand
18.	State Euler's theorem	CO4	Remember
19.	Define total derivative.	CO4	Remember
20.	Write the Chain rule for implicit functions	CO4	Remember
	UNIT-V: MULTIPLE INTEGRALS AND APPLICA	TIONS	1
1.	Calculate the integral value of $\int_{0}^{1} \int_{0}^{2} y^2 dy dx$	CO5	Remember
2.	Calculate the integral value of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$	CO5	Remember
3.	Find the integral $\int_{0}^{\frac{\Pi}{2}} \int_{-1}^{1} (x^2 y^2) dy dx$	CO5	Understand
4.	Calculate the integral value of $\int_{0}^{a} \int_{0}^{b} (x^2 + y^2) dy dx$	CO5	Remember
5.	Calculate the integral value of $\int_{0}^{2} \int_{0}^{3} xy dy dx$	CO5	Remember

6.	Find the value of $\int_{-1-2}^{1} dx dy$	C05	Understand
7.	Estimate the area enclosed by the parabolas $y^2 = x$ and $x^2 = y$	C05	Remember
8.	Estimate the area enclosed by the parabola $x^2 = y$ and the line $y = x$	C05	Remember
9.	Find the value of $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$	C05	Understand
10.	Evaluate $\int_{0}^{2} \int_{0}^{x} e^{x+y} dy dx$	C05	Evaluate
11.	Evaluate $\iint_{R} x^2 dx dy$ over the region bounded by the hyperbola xy=4, y=0, x=1 and x=4.	C05	Evaluate
12.	Find the integral $\int_{0}^{5} \int_{0}^{x^2} x(x^2 + y^2) dx dy$	C05	Understand
13.	Change the order of Integration $\int_{x=0}^{4a} \int_{y=x^2/4a}^{2\sqrt{ax}} dy dx$	CO5	Apply
14.	Write the change of variables from Cartesian to Cylindrical polar coordinates in Triple integrals	C05	Remember
15.	Write the change of variables from Cartesian to Spherical polar coordinates in Triple integrals	C05	Remember
16.	Find the area bounded by the Parabola $y = x^2$ and $y = 2x + 3$	C05	Understand
17.	Calculate the integral value of $\int_{0}^{3} \int_{1}^{2} (x^{2} + 3y^{2}) dy dx$	CO5	Remember
18.	Write the change of variables from Cartesian to polar coordinates in double integrals	CO5	Remember
19.	Change the order of Integration $\int_{0}^{a} \int_{x^{2}/a}^{2a-x} xy dy dx$	CO5	Apply
20.	Evaluate $\int_{-a}^{a} \int_{-b}^{b} \int_{-c}^{c} \pi dx dy dz$	C05	Evaluate

	PART-B (LONG ANSWER QUESTIONS)			
	UNIT-I: MATRICES			
SNO	QUESTION	Course Outcome	Bloom's Taxonomy	
1.	Express the matrix A as sum of symmetric and skew – symmetric matrices. Where $A = \begin{bmatrix} 3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$	C01	Apply	

			-
2.	For what values of k the matrix $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & -2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank '3'.	C01	Analyze
3.	Translate the Matrix A= $\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ into Normal form by elementary row and column operations.	C01	Apply
4.	Solve the system of equations 2x + 4y + z = 14;5x + y - z = 10; x + y + 8z = 20. using Gauss Seidel method.	C01	Design
5.	Find the inverse of the matrix by elementary row operations $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$	C01	Understand
6.	Solve the system of equations x + 2y - 3z = 9; $2x - y + z = 0$; $4x - y + z = 4$. using Gauss Elimination method	C01	Design
7.	Find for what values of λ and μ the system of equations $x + y + z = 6$, $x + 2y + 5z = 10$ and $2x + 3y + \lambda z = \mu$ will have (i) No solution (ii) Unique Solution (iii) Infinite Solution	C01	Understand
8.	Determine the values of a,b,c when $\begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal	C01	Understand
9.	Translate the Matrix A= $\begin{bmatrix} 1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$ into Normal form by	C01	Apply
10.	elementary row and column operations. Show that the only real value of λ for which the following system of equations have non-zero solution is 6. $x+2y+3z=\lambda x, 3x+y+2z=\lambda y, 2x+3y+z=\lambda z.$	C01	Apply
11.	Solve the system of equations $3x+y-z = 3$, $2x-8y+z = -5$, $x-2y+9z = 8$ using Gauss elimination method.	C01	Apply
12.	Solve the system of equations x+3y-2z = 0, 2x-y+4z = 0, x-11y+14z = 0	C01	Design
13.	Find the non-singular matrices P and Q such that the normal form of A is P A Q. Where A = $\begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$. Hence find its rank.	C01	Understand
14.	Show that the equations x+y+z=6, x+2y+3z=14, x+4y+7z=30 are consistent	C01	Apply

	and solve them		
15.	Find whether the following equations are consistent, if so solve them. x+y+2z=4, 2x-y+3z=9, 3x-y-z=2	C01	Understand
16.	Show that the equations given below are consistent and hence solve them x-3y-8z = -10, 3x+y-4z =0, 2x+5y+6z =3	C01	Apply
17.	Solve the system of equations $4x + 2y + z = 11$; $-x + 2y = 3$; $2x + y + 4z = 16$. using Gauss Seidel method	C01	Design
18.	Solve the system of equations 2x + 4y + z = 14; $5x + y - z = 10$; $x + y + 8z = 20$. using Gauss Seidel method.	C01	Design
19.	Find for what values of λ the system of equations $x + y + z = 1, x + 2y + 4z = \lambda$ and $x + 4y + 10z = \lambda^2$ have a solution and solve them each case.	C01	Understand
20.	Find the inverse of the matrix by Gauss-Jordon method $A = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 3 & 3 & 3 \end{bmatrix}$	C01	Understand
	UNIT-II: EIGEN VALUES AND EIGEN VECTO	RS	
1.	Utilize Cayley Hamilton theorem, find the inverse of the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$	CO2	Apply
2.	Find the model matrix P which transforms the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ into diagonal form.	CO2	Understand
3.	Utilize Cayley Hamilton theorem, find A^4 of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$	C02	Apply
4.	Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	CO2	Understand
5.	Verify Cayley Hamilton theorem and express $2A^5 - 3A^4 + A^2 - 4I$ as a	CO2	

	linear polynomial in A, where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$		
6.	Identify the nature of the quadratic form $x^{2} + 4y^{2} + z^{2} - 4xy + 2xz - 4yz$. by reducing into Canonical form. Also find rank, index and signature.	C02	Apply
7.	Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	C02	Understand
8.	Identify the nature of the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$. by transforming into sum of squares form.	CO2	Apply
9.	Find the Eigen values and Eigen vectors of the matrix A and its inverse, where $A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$	C02	Understand
10.	Find the Eigen values of $3A^3 + 5A^2 - 6A + 2I$ where $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$	2 -G02 3 2 3 -2	Understand
11.	Find a matrix P which transform the matrix $ \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} $ to diagonal form. Hence calculate A^4	C02	Understand
12.	Determine the modal matrix P of $= \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Verify that $P^{-1}AP$ is a diagonal matrix.	C02	Understand
13.	Show that the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation Hence find A^{-1}	C02	Apply
14.	Using Cayley - Hamilton Theorem find the inverse and A ⁴ of the matrix A = $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$	C02	Apply
15.	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form by orthogonal reduction.	C02	Apply
16.	If $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ Find the Eigen values and corresponding Eigen vectors of A.	C02	Understand
17.	Find the orthogonal transformation which transforms the quadratic form $x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$ to canonical form	CO2	Understand

18.	If $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ then find A ¹⁰⁰ using diagonalization.	CO2	Understand
19.	For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are orthogonal.	CO2	Design
20.	The sum of the eigen values of a square matrix is equal to its trace and product of the eigen values is equal to its determinant.	CO2	Design
	UNIT-III: CALCULUS OF SINGLE VARIABLE		
1.	Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ or $e^{-x} \sin x$ in $[0,\pi]$	CO3	Analyze
2.	Verify Rolle's theorem for the functions $\log\left(\frac{x^2 + ab}{x(a+b)}\right)$ in[a,b], a>0, b>0	CO3	Analyze
3.	Verify Rolle's theorem for the function $f(x) = (x-a)^m(x-b)^n$ where m,n are positive integers in [a,b].	CO3	Analyze
4.	Using Rolle 's Theorem, show that $g(x) = 8x^3-6x^2-2x+1$ has a zero between 0 and 1.	C03	Apply
5.	Verify Rolle's theorem for $f(x) = x(x+3)e^{-x/2}$ in [-3,0].	C03	Analyze
6.	Verify Lagrange's Mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4]	CO3	Analyze
7.	If a <b, <math="" p.t="">\frac{b-a}{1+b^2} < Tan^{-1}b - Tan^{-1}a < \frac{b-a}{1+a^2} using Lagrange's Mean value theorem. Deduce the following. i). $\frac{\pi}{4} + \frac{3}{25} < Tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$ ii). $\frac{5\pi + 4}{20} < Tan^{-1}2 < \frac{\pi + 2}{4}$</b,>	CO3	Apply
8.	Find c of Cauchy's mean value theorem for $f(x) = \sqrt{x} \& g(x) = \frac{1}{\sqrt{x}}$ in [a,b] where 0 <a<b< td=""><td>CO3</td><td>Understand</td></a<b<>	CO3	Understand
9.	Verify Cauchy's Mean value theorem for $f(x) = e^x \& g(x) = e^{-x}$ in [3,7] & find the value of c.	CO3	Analyze
10.	Verify Taylor's theorem for $f(x) = (1-x)^{5/2}$ with Lagrange's form of remainder up to 2 terms in the interval [0,1].	CO3	Analyze
11.	Show that $\log(1+e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} + \frac{x^4}{192} + \dots + \dots + \log \log (1+e^x)$	CO3	Apply

r	_		
	deduce that $\frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{e}^{\mathbf{x}}+1} = \frac{1}{2} + \frac{\mathbf{x}}{4} - \frac{\mathbf{x}^{3}}{48} +$		
12.	Show that $\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} dx = \frac{\sqrt{\pi}}{3}$	CO3	Apply
13.	Evaluate $\int_{0}^{1} \frac{x^4}{\sqrt{1-x^2}} dx$	CO3	Evaluate
14.	Show that $\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$	C03	Apply
15.	Use $\beta - \Gamma$ functions to evaluate $\int_{0}^{\frac{1}{2}} \sin^2 \theta \cos^4 \theta d\theta$	C03	Apply
16.	Evaluate $\int_{0}^{\infty} x^{\frac{1}{2}} e^{-\frac{x}{5}} dx$	CO3	Evaluate
17.	Prove that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$	C03	Understand
18.	$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ Prove that	C03	Understand
19.	$\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$ Show that	CO3	Apply
20.	Use $\beta - \Gamma$ functions to evaluate $\int_{0}^{\infty} \frac{x^2}{1 + x^4} dx$	CO3	Evaluate
	UNIT-IV: MULTIVARIABLE CALCULUS		•
1.	If x+y+z=u , y+z=uv, z=uvw then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$	CO4	Apply
2.	Prove that u=x+y+z, v=xy+yz+xz, w= $x^2 + y^2 + z^2$ are functional dependent and find the relation between them.	CO4	Apply
3.	find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$	CO4	Understand
4.	Examine for maximum and minimum values of $Sin x \mathbb{Z} + sin y \mathbb{Z} \mathbb{Z} + sin^{[in]}(x+y)$	CO4	Analyse
F	Examine for maximum and minimum values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72xy$.	CO4	Analyse
6	Divide 24 into three parts such the continued product of first, square of second and cube of third is maximum	CO4	Apply
7.	$u = \frac{yz}{x}, v = \frac{xz}{y}, w = \frac{xy}{z} find \frac{\partial(u, v, w)}{\partial(x, y, z)}$	CO4	Understand
			•

8.	Find the maximum and minimum values $x^4 + y^4 - 2x^2 - 2y^2 + 4xy$	CO4	Understand
9.	find the minimum value & maximum value of $x + y + z$ given to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1.$	CO4	Understand
10.	Find the point on the plane x+2y+3z=4. Which is nearest to the origin	CO4	Understand
11.	Find the shortest distance between the functions xyz ² =2	CO4	Understand
12.	If $x = u(1-v)$, $y = uv$ prove that $JJ'=1$.	C04	Apply
13.	If the functions $x=e^r \sec \theta$, $y=e^r \tan \theta$ them prove that JJ'=1	CO4	Apply
14.	Find the maximum and minimum values of the function $f(x,y)=x^3y^2(1-x-y)$.	CO4	Understand
15.	If u=f(y-z,z-x,x-y) then Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	CO4	Apply
16.	Find the dimensions of the rectangular box open at the top of maximum capacity whosesurface area is 108 sq inches	CO4	Understand
17.	If $u=x^2 - y^2$, $v=2xy,x=r\cos\theta$, $y=r\sin\theta$ then find $\frac{\partial(u,v)}{\partial(r,\theta)}$	CO4	Understand
18.	Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid.	CO4	Understand
19.	If $u = \tan^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\sin 2u$	CO4	Apply
20.	If $u = \log\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 1$	CO4	Apply
	UNIT-V: MULTIPLE INTEGRALS AND APPLICAT	TIONS	
	Evaluate $\iint xydxdy$ where R is the region bounded by x-axis and		
1.	the ordinate x=2a and the curve $x^2=4ay$.	CO5	Evaluate
2.	Evaluate $\int_0^{\pi} \int_0^{a\sin\theta} r dr d\theta$	C05	Evaluate
3.	Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$	CO5	Evaluate
4.	Evaluate $\iint (x^2 + y^2) dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	C05	Evaluate
5.	Evaluate $\iint_{R} r^{3} dr d\theta$ where R is the region included between the circles r=2sin θ and r=4sin θ	CO5	Evaluate
6.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$	C05	Evaluate

	П	C05	
7.	Evaluate $\int_{0}^{\frac{1}{2}} \int_{0}^{\infty} \frac{r}{(r^2 + a^2)^2} dr d\theta$	005	Evaluate
	Evaluate $\iint y dx dy$ where R is the region bounded by the parabolas	CO5	
8.	$y^2 = 4x$ and $x^2 = 4y$		Evaluate
9.	Find the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} \sqrt{a^2 - x^2 - y^2} dx dy$	C05	Understand
10.	Evaluate $\iint xy(x+y)dxdy$ over the region R bounded by y=x ² and y=x.	C05	Evaluate
11.	Evaluate $\int_{0}^{\pi/4} \int_{0}^{a\sin\theta} \frac{rdrd\theta}{\sqrt{a^2 - r^2}}$	C05	Evaluate
12.	Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	C05	Understand
13.	Find the area of the loop of the curve $r=a(1+\cos\theta)$.	C05	Understand
14.	Using triple integrals, Find the volume of the sphere whose radius is' a'	C05	Apply
15.	Using double integration, find the area lying between the parabola $y=4x-x^2$ and the line $y=x$.	C05	Apply
16.	Determine the volume of the solid in the first octant bounded by the Paraboloid $z=9-x^2-4y^2$.	C05	Apply
17.	Using double integration, find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.	C05	Apply
18.	Find the volume of the tetrahedron bounded by the coordinate planes ar $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$	C05	Apply
	Change the order of integration and evaluate	C05	
19.	$= \int_{0}^{a} \int_{\frac{x}{a}}^{\frac{x}{a}} \left(x^{2} + y^{2}\right) dx dy$		Apply
20.	Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$ and hence evaluate the double integral.	CO5	Apply
21.	Change of the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y^{2} \sqrt{1-y^{2}} dx dy$	C05	Apply
22.	Evaluate the integral by changing to polar co-ordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2} + y^{2}) dx dy$	C05	Evaluate
23.	Show that $\int_{0}^{4a} \int_{y^{2}/4a}^{y} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dx dy = 8a^{2} \left(\frac{\pi}{2} - \frac{5}{3}\right)$	C05	Apply
24.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dx dy dz$	C05	Evaluate

25. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	CO5	Evaluate
---	-----	----------