

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

COURSE STRUCTURE AND SYLLABUS I B.Tech ECE MLRS(R20) (w.e.f A.Y. 2020-21)

I B.Tech - I Sem

S.	Course Code	Course Name	Course Area	Periods per week		Credits	Scheme of Examination Maximum Marks			
NO.				L	Т	Ρ		Internal (CIE)	Externa (SEE)	Total
1	2010001	Engineering Mathematics-I	BS	3	1	0	4	30	70	100
2	2010006	Applied Physics	BS	3	1	0	4	30	70	100
3	2010501	Programming for Problem Solving	ES	3	1	0	4	30	70	100
4	2010071	Applied Physics Laboratory	BS	0	0	3	1.5	30	70	100
5	2010571	Programming for Problem Solving Laboratory	ES	0	0	3	1.5	30	70	100
6	2010371	Engineering Drawing Practice	ES	1	0	4	3	30	70	100
		Induction Programme	-	-	-	-	-	-	-	-
TOTAL				10	3	10	18	180	420	600

2010001: ENGINEERING MATHEMATICS- I

LTPC 3104

B.Tech. I Year I Semester Course Objectives: To learn

- Types of matrices and their properties, Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form. Geometrical approach to the mean value theorems and their application to the mathematical problems.
- Partial differentiation, concept of total derivative, finding maxima and minima of function of two and three variables.
- The evaluation of Multiple integration and its applications

Course Outcomes:

After learning the contents of this paper the student must be able to

- **CO.1**: Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- **CO.2:** Find the Eigen values, Eigen vectors and reduce the quadratic form to canonical form using orthogonal transformations.
- **CO.3:** Solve the applications on the mean value theorems.

CO.4: Find the extreme values of functions of two variables with/ without constraints.

CO.5: Evaluate the multiple integrals and apply the concept to find areas, volumes for cubes, sphere and rectangular parallelepiped

UNIT-I: Matrices

Matrices: Types of Matrices, Symmetric, Skew-symmetric, orthogonal matrices, rank of a matrix by Echelon form, Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations, solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method, Gauss seidel iteration method.

Learning outcomes:

- Understand the matrix representation of a set of linear equations
- Explain the Normal form and Echelon form.
- Apply elementary operations to find the rank
- Analyse the solution of the system of Linear equations
- Evaluate the rank of the matrix.

UNIT-II: Eigen values and Eigen vectors

Eigen values and Eigenvectors and their properties: Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms up to three variables. Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

Learning outcomes:

- Understand how to find the eigen values and eigen vectors of a matrix.
- Explain the quadratic form to canonical form using orthogonal transformations.
- Apply Cayley Hamilton theorem to find inverse and powers of the matrix
- Analyse the nature of the quadratic form.
- Evaluate the powers of matrix.

UNIT-III: Calculus of single variable.

Mean value theorems: Rolle's Theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's and Maclaurin theorems with remainders (without proof). Beta and Gamma functions and their applications. Learning outcomes:

- Understand the concept of mean value theorem.
- Explain the nature of functions by using mean value theorems.
- Apply Taylor's or Maclaurin's series to find the series expansion for the functions.
- Analyse the geometrical interpretation of mean value theorem.
- Evaluation of the slopes at any point on the curve.

UNIT-IV: Multivariable Calculus.

Partial Differentiation, Euler's Theorem, Total derivative, Jacobian, Functional dependence, independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

Learning outcomes:

- Understand the concept of partial differentiation.
- Explain the functional dependence using Jacobian.
- Apply Lagrange's method to find Maxima and minima.
- Analyse concept of Lagrange multipliers.
- Evaluate the maximum and minimum value of functions of two variables.

UNIT-V: Multiple integrals& applications:

Evaluation of Double integrals (Cartesian and polar coordinates), Change of order of integration (Cartesian form), Evaluation of Triple integrals, Change of variables (Cartesian to polar) for double and (cartesian to spherical and cylindrical polar coordinates) for triple integrals.

Applications: finding the area of a region using double integration and volume of a region using double and triple integration.

Learning outcomes:

- Understand the concept of double integrals.
- Explain the polar form of double integral and triple integral.
- Apply double integration techniques in evaluating areas bounded by region.
- Analyse the centre of mass of a Lamina.
- Evaluation of double integrals interns of volumes.

TEXTBOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

REFERENCES:

- 1. N.P. Bali and Manish Goyal, Atextbook of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 2. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

2010006:APPLIED PHYSICS

B.Tech. I Year I Semester

L T P C 3 0 0 3

Course Objectives:

- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics, optoelectronics and dielectric and magnetic properties and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: Upon graduation:

- The student would be able to learn the fundamental concepts on Quantum behavior of matter in its micro state.
- The knowledge of fundamentals of Semiconductor devices and their applications.
- Design, characterization and study of properties of optoelectronic devices help the students to prepare new materials for various engineering applications.
- Study about Lasers and fiber optics which enable the students to apply to various systems involved with communications.
- The course also helps the students to be exposed to the phenomena of dielectric and magnetic properties.

UNIT-I: Quantum Mechanics

Introduction to quantum physics, Black body radiation, Photoelectric effect, de-Broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg's Uncertainty principle, Born's interpretation of the wave function, Schrodinger's time independent wave equation, Particle in one dimensional box.

Learning Outcomes:

Understand the fundamental concepts of quantum mechanics.

Explain the physical significance of wave function.

Apply Schrödinger's wave equation for a free particle.

Analyze the particle behavior in different potential regions.

Evaluate the significance of energy values in one dimensional box.

UNIT-II: Semiconductor Physics

Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier transport: diffusion and drift, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation, Hall effect.

Learning Outcomes:

Understand the energy band formation of semiconductors.

Explain the properties of n-type and p-type semiconductors.

Apply the Hall effect for various types of semiconductors.

Analyze the various types of diodes.

Evaluate the hall coefficient of semiconductors.

UNIT-III: Optoelectronics

Radiative and non-radiative recombination mechanisms in semiconductors, LED : Device structure, Materials, Characteristics and figures of merit, Semiconductor photodetectors: Solar cell, PIN and Avalanche photodiode and their structure, working principle and Characteristics.

Learning Outcomes:

Understand the basic principle involved in LED. Explain about various types of photodiodes. Apply the knowledge on various diodes. Analyze the working of PIN and Avalanche diodes. Evaluate the characteristics of diodes.

UNIT-IV: Lasers and Fibre Optics

Lasers: Introduction to Lasers, Coherence, Population inversion, Pumping, Lasing action, Types of Lasers: Ruby laser, Carbon dioxide (CO₂) laser, He-Ne laser, Semiconductor laser; Applications of laser.

Fibre Optics: Introduction, Block diagram of fiber optic communication system, Total internal reflection, Acceptance angle and Numerical aperture, Step and Graded index fibres, Losses associated with optical fibres, Applications of optical fibres.

Learning Outcomes:

Understand about Laser and fiber optics.

Explain the working principle of laser and optical fibers.

Apply optical fibers in communication system.

Analyze the applications of optical fibers in medical, communication and other fields.

Evaluate the laser and fiber optic concepts in various fields.

UNIT-V: Dielctric and Magnetic Properties

Dielectric properties: Introduction to dielectrics, Polarisation, Permittivity and Dielectric constant, Types of polarisation (Qualitative), Internal fields in a solid, Clausius-Mossotti equation, Ferroelectrics and Piezoelectrics.

Magnetic properties: Introduction to magnetism, Magnetisation, permeability and susceptibility, Classification of magnetic materials, Domain theory of ferro magnetism, Hysteresis, Applications of magnetic materials.

Learning Outcomes:

Understand the concept of polarization in dielectric materials.

Explain various types of polarization of dielectrics and classification of magnetic materials.

Apply Lorentz field and Claussius- Mosotti relation in dielectrics.

Analyze the ferromagenetism on the basis of domain theory.

Evaluate the applications of dielectric and magnetic materials.

TEXT BOOKS:

- 1. Engineering Physics, B.K. Pandey, S. Chaturvedi Cengage Learing.
- 2. Halliday and Resnick, Physics Wiley.
- 3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar S. Chand

REFERENCES:

- 1. Richard Robinett, Quantum Mechanics
- 2. J. Singh, Semiconductor Optoelectronics: Physics and Technology, Mc Graw-Hill inc. (1995).
- 3. Online Course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Guptha on NPTEL.

2010501:PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Semester.

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes: The student will learn

- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code..
- Searching and sorting problems.

Unit - 1: Introduction to Programming

Introduction to computers: disks, primary and secondary memory, processor, operating system, compilers, creating and running of program, Number systems, Pseudo code, algorithm, flowchart.

Introduction to C Programming Language: Basic structure of C program, Syntax and Logical Errors in compilation, 'C' tokens: Identifiers, variables, Data types, Operators(Arithmetic, Relational, Logical, Bit-wise, Increment and Decrement, size of, Conditional operator, Assignment, Special operator), expressions and precedence, Expression evaluation, Precedence and Associativity, type conversion, Command line arguments.

Unit - II: Control statements, Arrays

Conditional statements: Writing and evaluation of conditionals and consequent branching with if, if-else, nested if-else and switch statements.

Iterative Statements: while, do-while, for, Nested loops

Jumping Statements: break, continue and goto

I/O: Simple input and output with scanf and printf, formatted I/O, stdin, stdout, stderr.

Arrays: Types of arrays, creating, accessing and manipulating elements of arrays.

Unit - III: Strings, Structures and Unions, Pointers

Strings: Introduction to strings, handling strings as array of characters, string I/O functions, string handling functions, arrays of strings

Structures and unions: Defining structures, Initializing structures, Array of structures, nested structures, Bit Fields, unions.

Pointers: Defining pointers, Address and Indirection operators, pointers to arrays and structures, use of pointers in self-referential structures, Enumeration Data types

Unit - IV: Functions and Dynamic memory allocation

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, call by reference, void function, Structure to functions, Some C standard functions and libraries, Storage classes (auto, extern, static and register)

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions.

Dynamic Memory Allocation: Allocating and freeing memory, Allocating memory for arrays of different data types.

Unit - V: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef.

Files: Text and Binary files, File structure, Creating, Reading and Writing text and binary files, Appending data to existing files, Writing and Reading structures using binary files, File Status functions, File Positioning functions.

TEXT BOOKS:

- 1. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition)
- 2. Let us C by <u>YashavantKanetkar</u> BPB publications (16th Edition)

REFERENCE BOOKS:

- 1. programming in ANSI C by Balaguruswamy,(7th Edition)
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 3. R.G. Dromey, How to solve it by Computer, Pearson (16thImpression)
- 4. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education HerbertSchildt, C: The Complete Reference, McGrawHill, 4th Edition

MLRITM

2010071:APPLIED PHYSICS LAB

B.Tech. I Year I Semester

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- To gain practical knowledge by applying the experimental methods to correlate with the theoretical knowledge of physics concepts.
- > To learn the usage of electrical and optical systems for measurements.
- > Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills through discussion on basic principles of scientific concepts in a group.

COURSE OUTCOMES:

- > Understand the concepts of the error and analysis.
- Explain the different measuring devices and meters to record the data with precision.
- > Apply the experimental skills to design new experiments in engineering.
- > Analyze the theoretical knowledge and correlate with the experiment.
- Evaluate the various parameters accurately.

List of Experiments:

- 1. Energy gap of P-N junction diode: To determine the energy gap of a semiconductor diode.
- 2. Solar Cell: To study the V-I Characteristics of solar cell.
- 3. Photoelectric effect: To determine work function of a given material.
- 4. Light emitting diode: Plot V-I and P-I characteristics of light emitting diode.
- 5. LASER: To study the V-I characteristics of LASER sources.
- 6. Optical fibre: To determine the Numerical aperture and bending losses of Optical Fibres
- 7. Stewart Gee's experiment:

Determination of magnetic field induction along the axis of a current carrying coil.

- 8. Hall effect: To determine Hall co-efficient of a given semiconductor.
- 9. LCR Circuit: To determine the resonance frequency and Quality factor of LCR Circuit.
- 10. R-C Circuit: To determine the time constant of R-C circuit.

Note: Any 8 experiments are to be performed

2010571:PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year I Semester

L T P C 0 0 3 1.5

[Note: The programs may be executed using any available Open Source/ Freely available IDE Some of the Tools available are:

Code Lite: <u>https://codelite.org/</u> Code::Blocks: <u>http://www.codeblocks.org/</u> DevCpp :<u>http://www.bloodshed.net/devcpp.html</u> Eclipse: <u>http://www.eclipse.org</u> This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- Formulate the algorithms for simple problems
- Able to develop programs based on condition checking
- Implement pyramid programs
- Able to perform matrix applications
- Modularize the code with functions so that they can be reused
- Create, read and write to and from simple text and binary files

Simple numeric problems:

- a. Write a program for the simple, compound interest.
- b. Write a program for calculating area, perimeter of a rectangle, triangle and square.
- c. Write a program for calculating area and perimeter of a circle.
- d. Write a program to implement bit-wise operators.
- e. Write a program for converting Fahrenheit to Celsius.
- f. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.
- g. Write a simple program to find largest of two and three numbers using conditional operator.
- h. Write a program for swapping two numbers with and without using third variable and using bitwise operators.

Condition branching and statements:

- a. Write a program for finding largest of three numbers.
- b. Write a program that declares Class awarded for a given percentage of marks, where marks<40% = Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input.
- c. Write a C program to find the roots of a Quadratic equation.
- d. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

Condition branching and loops:

- a. Write a program to find whether the given number is a prime or not.
- b. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- c. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, number=5 and no. of rows = 3, the output should be:

$$5 x 1 = 5$$

 $5 x 2 = 10$
 $5 x 3 = 15$

- d. Write a program that shows the binary equivalent of a given positive number between 0 to 255.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to calculate the following, where x is a fractional value. $1\text{-}x/2\text{+}x^2/4\text{-}x^3/6$
- h. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: $1+x+x^2+x^3+...+x^n$. For example: if n=3 and x=5, then the program compute 1+5+25+125.
- i. Write a C program to construct a pyramid of numbers as follows:

1	*	1	1	*
12	* *	23	22	* *
123	* * *	456	333	* * *
			4444	* *
				*

- j. Write a C program to find given number is Armstrong number or not.
- k. Write a C program to find given number is Perfect number or not.

Arrays, Strings, Pointers and Structures:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a program to compute Mean, Variance, Standard Deviation, Sorting of n elements in single dimension array.
- c. Write a C program that perform the following:
 - i. Addition of Two Matrices
 - ii. Multiplication of Two Matrices
 - iii. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.
- d. Write a C program that sorts a given array of names.
- e. Write a C program that perform the following operations:
 - i. To insert a sub-string in to a given main string from a given position.
 - ii. To delete n Characters from a given position in a given string.
- f. Write a program for reading elements using pointer into array and display the values using array.
- g. Write a program for display values reverse order from array using pointer.
- h. Write a program through pointer variable to sum of n elements from array.
- i. Write a program to implement student information by using structure to function.
- j. Write a program to sort student id or name using structures.

Functions:

- a. Write a C program to find factorial of a given number using functions.
- b. Write a C program to perform swapping using functions.
- c. Write a C program to find LCM, GCD of two numbers using functions.
- d. Write a C program to implement sorting using functions.
- e. Write a C program to create and print two dimensional array using functions.
- f. Write a C program to find factorial of a given number using recursion.
- g. Write a C program to find Fibonacci series using recursion
- h. Write a C program to implement Towers of Hanoi problem using recursion.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another, replacing all lowercase characters with their upper case equivalents.
- c. Write a C program to count the occurrence of a character in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Reference Books

- 1. Byron Gottfried, Schaum's Outline of Programming with C,McGraw-Hill
- 2. Let us C by YashavantKanetkar BPB publications (16th Edition)
- 3. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition)
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 5. R.G. Dromey, How to solve it by Computer, Pearson (16thImpression)
- 6. Programming in C, Stephen G. Kochan, Fourth Edition, and Pearson Education.
- 7. Herbert Schildt, C: The Complete Reference, McGrawHill, 4thEdition.

MLRITM

2010371: Engineering Drawing Practice

B.Tech. I Year I Semester

L	Т	Р	С
1	0	4	3

PRE REQUESTS: Knowledge in dimensions and units, Usage of geometrical instruments and analytical ability

COURSE OBJECT :

- The course is aimed at developing basic graphic skills so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation.
- To prepare the student to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- To get exposure to a CAD package.

UNIT – 1 INTRODUCTION TO ENGINEERING DRAWING

HOURS : 10

Principles of Engineering Graphics and their Significance-Drawing Instruments and their Uses-Conventions in Drawing-BIS -Lettering and Dimensioning.

Geometrical Constructions: Bisecting a Line, Arc. Dividing A Line into 'N' Equal Parts,

Construction of Polygons, Division of Circle into Equal Parts (8 And 12)

Construction of Scales: Plain, Diagonal and Vernier Scale.

Conic Sections: Ellipse, Parabola, Hyperbola and Rectangular Hyperbola- General Methods only.

Engineering Curves: Cycloid, Epicycloid, Hypocycloid

Involutes: For Circle, Triangle, Square, Pentagon and Hexagon.

LEARNING OUTCOME :

- To understand the basic standards, conventions of engineering drawing and how to use the instruments in drawing.
- Learn and draw the various types of curves used in engineering application.

UNIT - 2 ORTHOGRAPHIC PROJECTIONS

HOURS : 15

Principles- Assumptions- Different Angles of Projection.

Projections of Points- orientation in all the quadrants

Projections of Lines- Parallel, Perpendicular, Inclined to one plane and Inclined to both planes. **Projections of Planes:** Surface Parallel, Perpendicular, Inclined to one plane and Inclined to both planes.

LEARNING OUTCOME :

- knowledge in various planes of projections
- To draw the front view, top view and side views of the given geometrical elements

UNIT – 3 PROJECTIONS OF SOLIDS

HOURS : 10

Classification of solids- Axis- Parallel, Perpendicular, Inclined to one plane and Inclined to both planes- Prisms, Pyramids, Cylinder and Cone

LEARNING OUTCOME :

- To understand the various solid types
- To draw all the views of the given solid in all possible orientations.

UNIT – 4 SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES HOURS : 15

Types of Section Planes, Sectioning Prisms, Pyramids, Cylinders and Cones using various planes. Development of surfaces of right Regular Solids- Parallel Line Method, Radial Line Method.

LEARNING OUTCOME :

- To identify the cut surfaces and represent the sectional views graphically when the solid is sectioned.
- To develop the surfaces of solid using various methods.

UNIT – 5 ISOMETRIC PROJECTIONS AND PERSPECTIVE PROJECTIONS HOURS : 10

Principles, Isometric Views of Planes, Solids- Box Method, Offset Method, Compound solids, Sectioned Solids.

Conversion of Isometric to Multi view projection. And vice versa.

LEARNING OUTCOME :

- Knowledge in principles of isometric projection
- Conversion of isometric to orthographic and vice-versa.

LEARNING OUTCOMES:

- To use the computer as tool in drafting.
- Using CAD in drawing the isometric and orthographic views of the given object.

TOTAL PERIODS: 55hrs

TEXT BOOK :

- 1. N.D.Bhatt, Elementary Engineering Drawing, Charotar Publishers, 2012.
- 2. Basanth Agrawal and C M Agrawal –Engineering Drawing 2e –,McGraw-Hill Education(India) Pvt.Ltd.

REFERENCE BOOK :

- 1. Engineering graphics with Auto CAD- R.B. Choudary/Anuradha Publishers
- 2. Engineering Drawing- Johle/Tata Macgraw Hill.
- 3. K.Veenugopal, –Engineering Drawing and Graphics + Autocad New Age International Pvt.Ltd, 2011.

COURSE OUTCOMES :

- 1. Familiarize with BIS standards and conventions used in engineering graphics.
- 2. Draw various engineering curves e.g., ellipse, parabola, cycloids and involutes etc and construct various reduced scales e.g., plain and diagonal scale.
- 3. Develop the lateral surfaces of simple solids
- 4. Ability to draw orthographic projections and isometric projections of given engineering components.
- 5. Visualize different views like elevation and plan for a given line, plane figures or solid objects.
- 6. Apply drafting techniques and use 2D software e.g., AutoCAD to sketch 2D plane figures.