

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 1

Dundigal, Quthbullapur (M), Hyderabad-500043.

Department of Computer Science Engineering

PREFACE

This book entitled “Compiler Design Lab Manual” is intended for the use of First semester (i.e,

III-I) B.Tech (CSE) students of Marri Laxman Reddy Institute of Technology and Management,

Dundigal, Hyderabad. The main objective of the Compiler Design Lab is to intended to make the

students experiment on the basic techniques of compiler construction and tools that can used to

perform syntax-directed translation of a high-level programming language into an executable

code. Students will design and implement language processors in C by using tools to automate

parts of the implementation process. This will provide deeper insights into the more advanced

semantics aspects of programming languages, code generation, machine independent

optimizations, dynamic memory allocation, and object orientation.

 By

 Ch Sravani ,

 Assistant Professor,

 CSE Department.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 2

Department of Computer Science Engineering

Institute Vision and Mission

Institute Vision:

To be as an ideal academic institution by graduating talented engineers to be ethically strong,

competent with quality research and technologies.

Institute Mission:

 Utilize rigorous educational experiences to produce talented engineers.

 Create an atmosphere that facilitates the success of students.

 Programs that integrate global awareness, communication skills and Leadership

qualities.

 Education and Research partnership with institutions and industries to prepare the

students for interdisciplinary research.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 3

Dundigal, Quthbullapur (M), Hyderabad-500043.

Department of Computer Science Engineering

Department Vision and Mission

Department Vision:

To empower the students to be technologically adept, innovative, self-motivated and

responsible global citizen possessing human values and contribute significantly towards high

quality technical education with ever changing world.

Department Mission:

 To offer high-quality education in the computing fields by providing an environment where

the knowledge is gained and applied to participate in research, for both students and faculty.

 To develop the problem solving skills in the students to be ready to deal with cutting edge

technologies of the industry.

 To make the students and faculty excel in their professional fields by inculcating the

communication skills, leadership skills, team building skills with the organization of various

co-curricular and extra-curricular programmes.

 To provide the students with theoretical and applied knowledge, and adopt an education

approach that promotes lifelong learning and ethical growth.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 4

Dundigal, Quthbullapur (M), Hyderabad-500043.

Department of Computer Science Engineering

Program Educational Objectivies:

PEO1: Establish a successful professional career in industry, government or academia.

PEO2: Gain multidisciplinary knowledge providing a sustainable competitive edge in higher

studies or Research.

PEO3: Promote design, analyze, and exhibit of products, through strong communication,

leadership and ethical skills, to succeed an entrepreneurial.

Program Outcomes

The Program Outcomes (POs) of the department are defined in a way that the Graduate

Attributes are included, which can be seen in the Program Outcomes (POs) defined. The

Program Outcomes (POs) of the department are as stated below:

a : An ability to apply knowledge of Science, Mathematics, Engineering & Computing

fundamentals for the solutions of Complex Engineering problems.

b : An ability to identify, formulates, research literature and analyze complex engineering

problems using first principles of mathematics and engineering sciences.

c : An ability to design solutions to complex process or program to meet desired needs.

d : Ability to use research-based knowledge and research methods including design of

experiments to provide valid conclusions.

e : An ability to use appropriate techniques, skills and tools necessary for computing practice.

f : Ability to apply reasoning informed by the contextual knowledge to assess social issues,

consequences & responsibilities relevant to the professional engineering practice.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 5

g : Ability to understand the impact of engineering solutions in a global, economic,

environmental, and societal context with sustainability.

h : An understanding of professional, ethical, Social issues and responsibilities.

i : An ability to function as an individual, and as a member or leader in diverse teams and in

multidisciplinary settings.

j : An ability to communicate effectively on complex engineering activities within the

engineering community.

k : Ability to demonstrate and understanding of the engineering and management principles as

a member and leader in a team.

l : Ability to engage in independent and lifelong learning in the context of technological

change.

Program Specific Outcomes

PSO1: Applications of Computing: Ability to use knowledge in various domains to provide solution

to new ideas and innovations.

PSO2: Programming Skills: Identify required data structures, design suitable algorithms, develop and

maintain software for real world problems.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 6

PROGRAM OUTCOMES

PO1 Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions. PO5 Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.
PO6 The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 7

PO8 Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able

to comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.
PO12 Life-long learning: Recognize the need for, and have the preparation and

ability to engage in independent and life-long learning in the broadest context

of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1 Professional Skills: The ability to research, understand and implement

computer programs in the areas related to algorithms, system software,

multimedia, web design, big data analytics, and networking for efficient

analysis and design of computer-based systems of varying complexity.

PSO2 Problem-Solving Skills: The ability to apply standard practices and strategies

in software project development using open-ended programming environments

to deliver a quality product for business success.

PSO3 Successful Career and Entrepreneurship: The ability to employ modern

computer languages, environments, and platforms in creating innovative career

paths, to be an entrepreneur, and a zest for higher studies.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT COMPILER DESIGN

LAB MANUAL, B PRASAD, Assoc. Prof., Dept. of CSE Page 8

COMPILER DESIGN LAB SYLLABUS

S. No. List of Experiments Page

No.

1 Write a LEX Program to scan reserved word & Identifiers of C

Language language.

2 Implement Predictive Parsing algorithm

3 Write a C program to generate three address code.

4 Implement SLR(1) Parsing algorithm

5 Design LALR bottom up parser for the given language

 ADDITIONAL PROGRAMS

6 Write a C program for implementing the functionalities of predictive

parser for the mini language specified in Note 1.

7 a) *Write a C program for constructing of LL (1) parsing.

b) *Write a C program for constructing recursive descent parsing.

*Content beyond the University prescribed syllabi

Dept. of CSE 9

Dundigal, Quthbullapur (M), Hyderabad-500043.

Department of Computer Science Engineering

 COURSE OBJECTIVE

1. To provide hands-on experience on web technologies

 2. To develop client-server application using web technologies

3. To introduce server-side programming with Java servlets and JSP

4. To understand the various phases in the design of a compiler.

5. To understand the design of top-down and bottom-up parsers.

6. To understand syntax directed translation schemes.

7. To introduce lex and yacc tools.

Dept. of CSE 10

Dundigal, Quthbullapur (M), Hyderabad-500043.

Department of Computer Science Engineering

OUTCOMES

1. Design and develop interactive and dynamic web applications using HTML, CSS, JavaScript

and XML

2. Apply client-server principles to develop scalable and enterprise web applications.

3. Ability to design, develop, and implement a compiler for any language.

4. Able to use lex and yacc tools for developing a scanner and a parser.

5. Able to design and implement LL and LR parsers

WEEK-1

Dept. of CSE 11

OBJECTIVE:

Implement the lexical analyzer using JLex, flex or other lexical analyzer generating tools.

AIM:

To analyze JLex, flex or other lexical analyzer generating tools.

RESOURCE:

 Linux using Putty

PROGRAM LOGIC:

 Read the input string.

 Check whether the string is identifier/ keyword /symbol by using the rules of identifier and

keywords using LEX Tool

PROCEDURE:

 Go to terminal

 Open vi editor,

 Compile using Lex lex.l , cc lex.yy.c , ./a.out

PROGRAM:

/* program name is lexp.l */

%{

 /* program to recognize a c program */

 int COMMENT=0;

%}

identifier [a-zA-Z][a-zA-Z0-9]*

%%

#.* { printf("\n%s is a PREPROCESSOR DIRECTIVE",yytext);}

int | float | char | double | while | for | do | if | break | continue | void | switch |

case | long | struct | const | typedef | return |else |

goto{printf("\n\t%s is a KEYWORD",yytext);}

"/*" {COMMENT = 1;}

Dept. of CSE 12

 /*{printf("\n\n\t%s is a COMMENT\n",yytext);}*/

"*/" {COMMENT = 0;}

 /* printf("\n\n\t%s is a COMMENT\n",yytext);}*/

{identifier}\({if(!COMMENT)printf("\n\nFUNCTION\n\t%s",yytext);}

\{ {if(!COMMENT) printf("\n BLOCK BEGINS");}

\} {if(!COMMENT) printf("\n BLOCK ENDS");}

{identifier}(\[[0-9]*\])? {if(!COMMENT) printf("\n %s IDENTIFIER",yytext);}

\".*\" {if(!COMMENT) printf("\n\t%s is a STRING",yytext);}

[0-9]+ {if(!COMMENT) printf("\n\t%s is a NUMBER",yytext);}

\)(\;)? {if(!COMMENT) printf("\n\t");ECHO;printf("\n");}

\(

\(ECHO;

= {if(!COMMENT)printf("\n\t%s is an ASSIGNMENT OPERATOR",yytext);}

\<= | \>= | \< | == |

\> {if(!COMMENT) printf("\n\t%s is a RELATIONAL OPERATOR",yytext);}

%%

int main(int argc,char **argv)

{

 if (argc > 1)

 {

 FILE *file;

 file = fopen(argv[1],"r");

 if(!file)

{

 printf("could not open %s \n",argv[1]);

exit(0);

}

 yyin = file;

 }

 yylex();

 printf("\n\n");

 return 0;

Dept. of CSE 13

}

int yywrap()

{

 return 0;

}

INPUT & OUTPUT:

Input

$vi var.c

#include<stdio.h> main()

{

int a,b;

}

Output

$lex lex.l

$cc lex.yy.c

$./a.out var.c

#include<stdio.h> is a PREPROCESSOR DIRECTIVE FUNCTION

main ()

BLOCK BEGINS

int is a KEYWORD

a IDENTIFIER

b IDENTIFIER

BLOCK ENDS

Dept. of CSE 14

PRE LAB QUESTIONS:

1. List the different sections available in LEX compiler?

2. What is an auxiliary definition?

3. How can we define the translation rules?

4. What is regular expression?

5. What is finite automaton?

POST LAB QUESTIONS:

1. What is Jlex?

2. What is Flex?

3. What is lexical analyzer generator?

4. What is the input for LEX Compiler?

5. What is the output of LEX compiler?

Dept. of CSE 15

WEEK-2

OBJECTIVE:

Write a C program for implementing the functionalities of predictive parser .

Understanding the functionalities of predictive parser for a given language.

 RESOURCE:

 Turbo C++

PROGRAM LOGIC:

 Read the input string.

 By using the FIRST AND FOLLOW values.

 Verify the FIRST of non terminal and insert the production in the FIRST value

 If we have any @ terms in FIRST then insert the productions in FOLLOW values

 Constructing the predictive parser table

PROCEDURE:

 Go to debug -> run or press CTRL + F9 to run the program.

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<string.h>

char prol[7][10]={"s","A","A","B","B","C","C"};

char pror[7][10]={"Aa","Bb","Cd","aB","@","Cc","@"};

char prod[7][10]={"s-->A","A-->Bb","A-->Cd","B-->aB","B-->@","C-->Cc","C-->@"};

char first[7][10]={"abcd","ab",cd","a@","@","c@","@"};

char follow[7][10]={"$","$","$","a$","b$","c$","d$"};

Dept. of CSE 16

char table[5][6][10];

{

switch(c)

{

case 'S':return0;

case 'A':return1;

case 'B':return2;

case 'C':return3;

case 'a':return0;

case 'b':return1;

case 'c':return2;

case 'd':return3;

case '$':return4;

}

retun(2);

}

void main()

{

int i,j,k;

clrscr();

for(i=0;i<5;i++)

for(j=0;j<6;j++)

strcpy(table[i][j]," ");

printf("\n The following is the predictive parsing table for the following grammar:\n");

for(i=0;i<7;i++)

printf("%s\n",prod[i]);

printf("\n Predictive parsing table is:\n ");

fflush(stdin);

for(i=0;i<7;i++)

{

k=strlen(first[i]);

for(j=0;j<10;j++)

if(first[i][j]!='@')

Dept. of CSE 17

strcpy(table[numr(prol[i][0])+1][numr(first[i][j])+1],prod[i]);

}

for(i=0;i<7;i++)

{

if(strlen(pror[i])==1)

{

if(pror[i][0]=='@')

{

k=strlen(follow[i]);

for(j=0;j<k;j++)

strcpy(table[numr(prol[i][0])+1][numr(follow[i][j])+1]prod[i]);

}

}

}

strcpy(table[0][0]," ");

strcpy(table[0][1],"a");

strcpy(table[0][2],"b");

strcpy(table[0][3],"c");

strcpy(table[0][4],"d");

strcpy(table[0][5],"$");

strcpy(table[1][0],"S");

strcpy(table[2][0],"A");

strcpy(table[3][0],"B");

strcpy(table[4][0],"C");

printf("\n---\n");

for(i-0;i<5;i++)

for(j=0;j<6;j++)

{

printf("%s_10S",table[i][j]);

if(j==5)

printf("\n---\n");

}

getch();

Dept. of CSE 18

}

INPUT & OUTPUT:

The following is the predictive parsing table for the following grammar:

S->A

A->Bb

A->Cd

B->aB

B->@

C->Cc

C->@

Predictive parsing table is

--

 a b c d $

--

S S->A S->A S->A S->A

--

A A->Bb A->Bb A->Cd A->Cd

--

B B->aB B->@ B->@ B->@

--

C C->@ C->@ C->@

--

PRE LAB QUESTIONS:

1. What is top-down parsing?

2. What are the disadvantages of brute force method?

3. What is context free grammar?

4. What is parse tree?

5. What is ambiguous grammar?

Dept. of CSE 19

6. What are the derivation methods to generate a string for the given grammar?

7. What is the output of parse tree?

POST LAB QUESTIONS

1. What is Predictive parser?

2. How many types of analysis can we do using Parser?

3. What is Recursive Decent Parser?

4. How many types of Parsers are there?

5. What is LR Parser?

Dept. of CSE 20

WEEK-3

OBJECTIVE: Write a C program to generate three address code.

RESOURCE:

Turbo C++

ALGORITHM:

Step1: Begin the program

Step2 : The expression is read from the file using a file pointer

Step3 : Each string is read and the total no. of strings in the file is calculated.

Step4: Each string is compared with an operator; if any operator is seen then the previous string and

next string are concatenated and stored in a first temporary value and the three address code

expression is printed

Step5 : Suppose if another operand is seen then the first temporary value is concatenated to the next

string using the operator and the expression is printed.

Step6 : The final temporary value is replaced to the left operand value.

Step7 : End the program

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<string.h>

struct three

Dept. of CSE 21

{

char data[10],temp[7];

}s[30];

void main()

{

char d1[7],d2[7]="t";

int i=0,j=1,len=0;

FILE *f1,*f2;

clrscr();

f1=fopen("sum.txt","r");

f2=fopen("out.txt","w");

while(fscanf(f1,"%s",s[len].data)!=EOF)

len++;

itoa(j,d1,7);

strcat(d2,d1);

strcpy(s[j].temp,d2);

strcpy(d1,"");

strcpy(d2,"t");

if(!strcmp(s[3].data,"+"))

{

fprintf(f2,"%s=%s+%s",s[j].temp,s[i+2].data,s[i+4].data);

j++;

}

else if(!strcmp(s[3].data,"-"))

{

fprintf(f2,"%s=%s-%s",s[j].temp,s[i+2].data,s[i+4].data);

j++;

}

for(i=4;i<len-2;i+=2)

{

itoa(j,d1,7);

strcat(d2,d1);

strcpy(s[j].temp,d2);

if(!strcmp(s[i+1].data,"+"))

fprintf(f2,"\n%s=%s+%s",s[j].temp,s[j-1].temp,s[i+2].data);

else if(!strcmp(s[i+1].data,"-"))

fprintf(f2,"\n%s=%s-%s",s[j].temp,s[j-1].temp,s[i+2].data);

strcpy(d1,"");

strcpy(d2,"t");

j++;

}

fprintf(f2,"\n%s=%s",s[0].data,s[j-1].temp);

Dept. of CSE 22

fclose(f1);

fclose(f2);

getch();

}

Input: sum.txt

out = in1 + in2 + in3 - in4

Output : out.txt

t1=in1+in2

t2=t1+in3

t3=t2-in4

out=t3

RESULT:

 Thus a C program to generate a three address code for a given expression is

written, executed and the output is verified.

Dept. of CSE 23

WEEK-4

OBJECTIVE: Implement SLR(1) Parsing algorithm

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<unistd.h>

int i,j,k,m,n=0,o,p,ns=0,tn=0,rr=0,ch=0;

char cread[15][10],gl[15],gr[15][10],temp,templ[15],tempr[15][10],*ptr,temp2[5];

char dfa[15][10];

struct states

{

 char lhs[15],rhs[15][10];

 int n;//state number

}I[15];

int compstruct(struct states s1,struct states s2)

{

 int t;

if(s1.n!=s2.n)

 return 0;

if(strcmp(s1.lhs,s2.lhs)!=0)

 return 0;

 for(t=0;t<s1.n;t++)

if(strcmp(s1.rhs[t],s2.rhs[t])!=0)

 return 0;

 return 1;

}

void moreprod()

{

 int r,s,t,l1=0,rr1=0;

 char *ptr1,read1[15][10];

 for(r=0;r<I[ns].n;r++)

 {

 ptr1=strchr(I[ns].rhs[l1],'.');

 t=ptr1-I[ns].rhs[l1];

if(t+1==strlen(I[ns].rhs[l1]))

 {

Dept. of CSE 24

 l1++;

 continue;

 }

 temp=I[ns].rhs[l1][t+1];

 l1++;

 for(s=0;s<rr1;s++)

if(temp==read1[s][0])

 break;

 if(s==rr1)

 {

 read1[rr1][0]=temp;

 rr1++;

 }

 else

 continue;

 for(s=0;s<n;s++)

 {

 if(gl[s]==temp)

 {

 I[ns].rhs[I[ns].n][0]='.';

 I[ns].rhs[I[ns].n][1]='\0';

strcat(I[ns].rhs[I[ns].n],gr[s]);

 I[ns].lhs[I[ns].n]=gl[s];

 I[ns].lhs[I[ns].n+1]='\0';

 I[ns].n++;

 }

 }

 }

}

void canonical(int l)

{

 int t1;

 char read1[15][10],rr1=0,*ptr1;

 for(i=0;i<I[l].n;i++)

 {

 temp2[0]='.';

 ptr1=strchr(I[l].rhs[i],'.');

 t1=ptr1-I[l].rhs[i];

if(t1+1==strlen(I[l].rhs[i]))

 continue;

 temp2[1]=I[l].rhs[i][t1+1];

 temp2[2]='\0';

 for(j=0;j<rr1;j++)

Dept. of CSE 25

if(strcmp(temp2,read1[j])==0)

 break;

 if(j==rr1)

 {

strcpy(read1[rr1],temp2);

 read1[rr1][2]='\0';

 rr1++;

 }

 else

 continue;

 for(j=0;j<I[0].n;j++)

 {

ptr=strstr(I[l].rhs[j],temp2);

if(ptr)

 {

templ[tn]=I[l].lhs[j];

templ[tn+1]='\0';

strcpy(tempr[tn],I[l].rhs[j]);

tn++;

 }

 }

 for(j=0;j<tn;j++)

 {

ptr=strchr(tempr[j],'.');

 p=ptr-tempr[j];

tempr[j][p]=tempr[j][p+1];

tempr[j][p+1]='.';

 I[ns].lhs[I[ns].n]=templ[j];

 I[ns].lhs[I[ns].n+1]='\0';

strcpy(I[ns].rhs[I[ns].n],tempr[j]);

 I[ns].n++;

 }

moreprod();

 for(j=0;j<ns;j++)

 {

 //if (memcmp(&I[ns],&I[j],sizeof(struct states))==1)

if(compstruct(I[ns],I[j])==1)

 {

 I[ns].lhs[0]='\0';

 for(k=0;k<I[ns].n;k++)

 I[ns].rhs[k][0]='\0';

 I[ns].n=0;

dfa[l][j]=temp2[1];

 break;

Dept. of CSE 26

 }

 }

 if(j<ns)

 {

tn=0;

 for(j=0;j<15;j++)

 {

templ[j]='\0';

tempr[j][0]='\0';

 }

 continue;

 }

dfa[l][j]=temp2[1];

printf("\n\nI%d :",ns);

 for(j=0;j<I[ns].n;j++)

printf("\n\t%c -> %s",I[ns].lhs[j],I[ns].rhs[j]);

 //getch();

 ns++;

tn=0;

 for(j=0;j<15;j++)

 {

templ[j]='\0';

tempr[j][0]='\0';

 }

 }

}

void main()

{

 FILE *f;

 int l;

 //clrscr();

 for(i=0;i<15;i++)

 {

 I[i].n=0;

 I[i].lhs[0]='\0';

 I[i].rhs[0][0]='\0';

dfa[i][0]= '\0';

 }

 f=fopen("tab6.txt","r");

 while(!feof(f))

 {

fscanf(f,"%c",&gl[n]);

fscanf(f,"%s\n",gr[n]);

Dept. of CSE 27

 n++;

 }

printf("THE GRAMMAR IS AS FOLLOWS\n");

 for(i=0;i<n;i++)

printf("\t\t\t\t%c -> %s\n",gl[i],gr[i]);

 I[0].lhs[0]='Z';

strcpy(I[0].rhs[0],".S");

I[0].n++;

 l=0;

 for(i=0;i<n;i++)

 {

 temp=I[0].rhs[l][1];

 l++;

 for(j=0;j<rr;j++)

if(temp==cread[j][0])

 break;

 if(j==rr)

 {

cread[rr][0]=temp;

rr++;

 }

 else

 continue;

 for(j=0;j<n;j++)

 {

 if(gl[j]==temp)

 {

 I[0].rhs[I[0].n][0]='.';

strcat(I[0].rhs[I[0].n],gr[j]);

 I[0].lhs[I[0].n]=gl[j];

I[0].n++;

 }

 }

 }

 ns++;

printf("\nI%d :\n",ns-1);

 for(i=0;i<I[0].n;i++)

printf("\t%c -> %s\n",I[0].lhs[i],I[0].rhs[i]);

 for(l=0;l<ns;l++)

 canonical(l);

printf("\n\n\t\tPRESS ANY KEY FOR TABLE");

 //getch();

Dept. of CSE 28

 //clrscr();

printf("\t\t\t\nDFA TABLE IS AS FOLLOWS\n\n\n");

 for(i=0;i<ns;i++)

 {

printf("I%d : ",i);

 for(j=0;j<ns;j++)

 if(dfa[i][j]!='\0')

printf("'%c'->I%d | ",dfa[i][j],j);

printf("\n\n\n");

 }

printf("\n\n\n\t\tPRESS ANY KEY TO EXIT");

 //getch();

}

3 OUTPUT

4

Dept. of CSE 29

5

6

Dept. of CSE 30

7

8

Dept. of CSE 31

WEEK-5

AIM:C program to Design LALR Bottom up Parser

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<string.h>

void push(char *,int *,char);

char stacktop(char *);

void isproduct(char,char);

int ister(char);

int isnter(char);

int isstate(char);

void error();

void isreduce(char,char);

char pop(char *,int *);

void printt(char *,int *,char [],int);

void rep(char [],int);

struct action

{

char row[6][5];

};

Dept. of CSE 32

const struct action A[12]={

{"sf","emp","emp","se","emp","emp"},

{"emp","sg","emp","emp","emp","acc"},

{"emp","rc","sh","emp","rc","rc"},

{"emp","re","re","emp","re","re"},

{"sf","emp","emp","se","emp","emp"},

{"emp","rg","rg","emp","rg","rg"},

{"sf","emp","emp","se","emp","emp"},

{"sf","emp","emp","se","emp","emp"},

{"emp","sg","emp","emp","sl","emp"},

{"emp","rb","sh","emp","rb","rb"},

{"emp","rb","rd","emp","rd","rd"},

{"emp","rf","rf","emp","rf","rf"}

};

struct gotol

{

char r[3][4];

};

const struct gotol G[12]={

{"b","c","d"},

{"emp","emp","emp"},

{"emp","emp","emp"},

Dept. of CSE 33

{"emp","emp","emp"},

{"i","c","d"},

{"emp","emp","emp"},

{"emp","j","d"},

{"emp","emp","k"},

{"emp","emp","emp"},

{"emp","emp","emp"},

};

char ter[6]={'i','+','*',')','(','$'};

char nter[3]={'E','T','F'};

char states[12]={'a','b','c','d','e','f','g','h','m','j','k','l'};

char stack[100];

int top=-1;

char temp[10];

struct grammar

{
char left;

char right[5];

};

const struct grammar rl[6]={

{'E',"e+T"},

{'E',"T"},

{'T',"T*F"},

Dept. of CSE 34

{'T',"F"},

{'F',"(E)"},

{'F',"i"},

};

void main()

{

char inp[80],x,p,dl[80],y,bl='a';

int i=0,j,k,l,n,m,c,len;

printf(" Enter the input :");

scanf("%s",inp);

len=strlen(inp);

inp[len]='$';

inp[len+1]='\0';

push(stack,&top,bl);

printf("\n stack \t\t\t input");

printt(stack,&top,inp,i);

do

{

x=inp[i];

p=stacktop(stack);

isproduct(x,p);

if(strcmp(temp,"emp")==0)

Dept. of CSE 35

error();

if(strcmp(temp,"acc")==0)

break;

else

{

if(temp[0]=='s')

{

push(stack,&top,inp[i]);

push(stack,&top,temp[1]);

i++;

}

else

{

if(temp[0]=='r')

{

j=isstate(temp[1]);

strcpy(temp,rl[j-2].right);

dl[0]=rl[j-2].left;

dl[1]='\0';

n=strlen(temp);

for(k=0;k<2*n;k++)

pop(stack,&top);

for(m=0;dl[m]!='\0';m++)

Dept. of CSE 36

push(stack,&top,dl[m]);

l=top;

y=stack[l-1];

isreduce(y,dl[0]);

for(m=0;temp[m]!='\0';m++)

push(stack,&top,temp[m]);

}

}

}

printt(stack,&top,inp,i);

}while(inp[i]!='\0');

if(strcmp(temp,"acc")==0)

printf(" \n accept the input ");

else

printf(" \n do not accept the input ");

getch();

}

void push(char *s,int *sp,char item)

{

if(*sp==100)

printf(" stack is full ");

else

Dept. of CSE 37

{

*sp=*sp+1;

s[*sp]=item;

}

}

char stacktop(char *s)

{

char i;

i=s[top];

return i;

}

void isproduct(char x,char p)

{

int k,l;

k=ister(x);

l=isstate(p);

strcpy(temp,A[l-1].row[k-1]);

}

int ister(char x)

{

int i;

for(i=0;i<6;i++)

if(x==ter[i])

Dept. of CSE 38

return i+1;

return 0;

}

int isnter(char x)

{

int i;

for(i=0;i<3;i++)

if(x==nter[i])

return i+1;

return 0;

}

int isstate(char p)

{

int i;

for(i=0;i<12;i++)

if(p==states[i])
return i+1;

return 0;

}

void error()

{

printf(" error in the input ");

exit(0);

Dept. of CSE 39

}

void isreduce(char x,char p)

{

int k,l;

k=isstate(x);

l=isnter(p);

strcpy(temp,G[k-1].r[l-1]);

}

char pop(char *s,int *sp)

{

char item;

if(*sp==-1)

printf(" stack is empty ");

else

{

item=s[*sp];

*sp=*sp-1;

}

return item;

}

void printt(char *t,int *p,charinp[],int i)

{

Dept. of CSE 40

int r;

printf("\n");

for(r=0;r<=*p;r++)

rep(t,r);

printf("\t\t\t");

for(r=i;inp[r]!='\0';r++)
printf("%c",inp[r]);

}

void rep(char t[],int r)

{

char c;

c=t[r];

switch(c)

{

case 'a': printf("0");

break;

case 'b': printf("1");

break;

case 'c': printf("2");

break;

case 'd': printf("3");

break;

case 'e': printf("4");

Dept. of CSE 41

break;

case 'f': printf("5");

break;

case 'g': printf("6");

break;

case 'h': printf("7");

break;

case 'm': printf("8");

break;

case 'j': printf("9");

break;

case 'k': printf("10");

break;

case 'l': printf("11");

break;

default :printf("%c",t[r]);

break;

}

}

Dept. of CSE 42

OUTPUT:

Dept. of CSE 43

ADDITIONAL PROGRAMS

OBJECTIVE:

*Write a C program for constructing of LL (1) parsing.

AIM:

Analyzing the constructing of LL (1) parser.

RESOURCE:

urbo C++

PROGRAM LOGIC:

the input string.

predictive parsing table parse the given input using stack .

stack [i] matches with token input string pop the token else shift it repeat the process until

it reaches to $.

PROCEDURE:

to debug -> run or press CTRL + F9 to run the program.

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<string.h>

char s[20],stack[20];

void main()

{

 char m[5][6][3]={"tb"," "," ","tb"," "," "," ","+tb"," "," ","n","n","fc"," "," ","fc"," "," ","

Dept. of CSE 44

","n","*fc"," ","n","n","i"," "," ","(e)"," "," "};

 int size[5][6]={2,0,0,2,0,0,0,3,0,0,1,1,2,0,0,2,0,0,0,1,3,0,1,1,1,0,0,3,0,0};

 int i,j,k,n,str1,str2;

 clrscr();

 printf("\n Enter the input string: ");

scanf("%s",s);

strcat(s,"$");

n=strlen(s);

stack[0]='$';

stack[1]='e';

i=1;

j=0;

printf("\nStack Input\n");

printf("__________________\n");

while((stack[i]!='$')&&(s[j]!='$'))

{

 if(stack[i]==s[j])

{

 i--;

 j++;

 }

 switch(stack[i])

{

 case 'e': str1=0;

break;

 case 'b': str1=1;

break;

 case 't': str1=2;

break;

 case 'c': str1=3;

break;

 case 'f': str1=4;

break;

}

Dept. of CSE 45

 switch(s[j])

{

case 'i': str2=0;

break;

 case '+': str2=1;

break;

 case '*': str2=2;

break;

 case '(': str2=3;

break;

 case ')': str2=4;

break;

 case '$': str2=5;

break;

}

 if(m[str1][str2][0]=='\0')

{

 printf("\nERROR");

 exit(0);

 }

else if(m[str1][str2][0]=='n')

 i--;

else if(m[str1][str2][0]=='i')

 stack[i]='i';

else

{

for(k=size[str1][str2]-1;k>=0;k--)

{

stack[i]=m[str1][str2][k];

 i++;

}

 i--;

}

for(k=0;k<=i;k++)

Dept. of CSE 46

 printf(" %c",stack[k]);

 printf(" ");

for(k=j;k<=n;k++)

 printf("%c",s[k]);

 printf(" \n ");

}

printf("\n SUCCESS");

getch();

}

INPUT & OUTPUT:

 Enter the input string:i*i+i

STACK INPUT

$bt i*i+i$

$bcf i*i+i$

$bci i*i+i$

$bc *i+i$

$bcf* *i+i$

$bcf i+i$

$bci i+i$

$bc +i$

$b +i$

$bt+ +i$

$bt i$

$bcf i$

$ bci i$

$bc $

$b $

$ $

success

PRE LAB QUESTIONS:

1. What is LL(1) parsing?

2. What are the disadvantages of brute force method?

3. How to parse LL(1) parser

 LAB ASSIGNMENT:

Dept. of CSE 47

1. Write a program to compute i+i*I using LL(1) parser

POST LAB QUESTIONS

1. What is Predictive parser?

2. What is Recursive Decent Parser?

3. How many types of Parsers are there?

Dept. of CSE 48

OBJECTIVE:

Construction of recursive descent parsing for the following grammar

E->TE'

E'->+TE/@ "@ represents null character"

T->FT'

T`->*FT'/@

 F->(E)/ID

AIM:

Analyzing recursive descent parsing grammar.

RESOURCE:

 T

urbo C++

PROGRAM LOGIC:

 R

ead the input string.

 W

rite procedures for the non terminals

 V

erify the next token equals to non terminals if it satisfies match the non terminal. If the

input string does not match print error.

PROCEDURE:

 G

o to debug -> run or press CTRL + F9 to run the program.

PROGRAM:

Dept. of CSE 49

#include<stdio.h>

#include<conio.h>

#include<string.h>

char input[100];

int i,l;

void main()

{

 clrscr();

 printf("\nRecursive descent parsing for the following grammar\n");

 printf("\nE->TE'\nE'->+TE'/@\nT->FT'\nT'->*FT'/@\nF->(E)/ID\n");

 printf("\nEnter the string to be checked:");

 gets(input);

 if(E())

{

 if(input[i+1]=='\0')

 printf("\nString is accepted");

else

 printf("\nString is not accepted");

}

else

printf("\nString not accepted");

getch();

}

E()

{

 if(T())

{

 if(EP())

 return(1);

 else

 return(0);

}

else

 return(0);

Dept. of CSE 50

}

EP()

{

 if(input[i]=='+')

{

 i++;

 if(T())

 {

 if(EP())

return(1);

 else

 return(0);

 }

 else

 return(0);

 }

 else

 return(1);

 }

T()

 {

 if(F())

 {

 if(TP())

 return(1);

 else

 return(0);

 }

 else

 return(0);

 }

TP()

 {

 if(input[i]=='*')

Dept. of CSE 51

 {

 i++;

 if(F())

 {

 if(TP())

 return(1);

 else

 return(0);

 }

 else

 return(0);

 }

 else

 return(1);

 }

F()

 {

 if(input[i]=='(')

 {

 i++;

 if(E())

 {

 if(input[i]==')')

 {

 i++;

 return(1);

 }

 else

 return(0);

 }

 else

 return(0);

 }

 else if(input[i]>='a'&&input[i]<='z'||input[i]>='A'&&input[i]<='Z')

Dept. of CSE 52

 {

 i++;

 return(1);

 }

 else

 return(0);

 }

 INPUT & OUTPUT:

 INPUT:

Recursive descent parsing for the following grammar

E->TE'

E'->+TE'/@

T->FT'

T'->*FT'/@

F->(E)/ID

Enter the string to be checked:(a+b)*c

 OUTPUT:

String is accepted

 INPUT:

Recursive descent parsing for the following grammar

E->TE'

E'->+TE'/@

 T->FT'

T'->*FT'/@

F->(E)/ID

Enter the string to be checked:a/c+d

 OUTPUT:

 String is not accepted

Dept. of CSE 53

PRE LAB QUESTIONS:

1. What is parse tree?

2. What is LL(1) parser?

3. What are the derivation methods to generate a string for the given grammar?

4. What is the output of parse tree?

LAB ASSIGNMENT:

1. Write a program to compute recursive descent parsing for the following grammar?

E TE'

E'+TE'/î

TFT’

T'*FT'/î

F(E)/i

2. Write a program to compute recursive descent parsing for the following grammar?

SiCtSS’

S’eS/ î

3. Write a program to compute recursive descent parsing for the following grammar?

SiCtSS’

S’eS/ î

POST LAB QUESTIONS

1. What is Predictive parser?

2. How many types of analysis can we do using Parser?

3. What is Recursive Decent Parser?

4. How many types of Parsers are there?

5. What is LR Parser?

