

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

Department of Computer Science and Engineering CS604PC: MACHINE LEARNING LAB

LAB MANUAL

Class	: III Year II Semester(CSE)
Branch	: Computer Science and Engineering
PreparedBy	: Dr.Ravi Prasad, Dr.Pratap Singh and Mr.K.Lakshminarayana
Year	: 2020-21

TABLE OF CONTENTS

S.No	Title	Page No
1.	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is theprobability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)	13
2.	Extract the data from database using python	14
3.	Implement k-nearest neighbours classification using python	17
	Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of kmeans clustering with 3 means (i.e., 3 centroids) periments	24
4.	VAR1 VAR2 CLASS 1.713 1.586 0 0.180 1.786 1 0.353 1.240 1 0.940 1.566 0 1.486 0.759 1 1.266 1.106 0 1.540 0.419 1 0.459 1.799 1 0.773 0.186 1	
5.	The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.	
	medium skiing design single twenties no -> highRisk	
	high golf trading married forties yes -> lowRisk	
	low speedway transport married thirties yes -> medRisk	
	medium football banking single thirties yes -> lowRisk	
	high flying media married fifties yes -> highRisk	
	low football security single twenties no -> medRisk	
	medium golf media single thirties yes -> medRisk	
	medium golf transport married forties yes -> lowRisk	
	high skiing banking single thirties yes -> highRisk	
	low golf unemployed married forties yes -> highRisk	
	Input attributes are (from left to right) income, recreation, job, status, age-group,	

	home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?	
6.	Implement linear regression using python.	22
7.	Implement Naïve Bayes theorem to classify the English text	27
8.	Implement an algorithm to demonstrate the significance of genetic algorithm	30
9.	Implement the finite words classification system using Back-propagation algorithm	35
10	Additional Experiments: Find-S and Candidate Elimination Algorithms	39 & 41

INSTITUTE VISION

To be as an ideal academic institution by graduating talented engineers to be ethically strong competent with quality research and technologies.

INSTITUTE MISSION

- Utilize rigorous educational experiences to produce talented engineers Create an atmosphere that facilitates the success of students.
- Programs that integrate global awareness, communication skills and Leadership qualities.
- Education and Research partnership with institutions and industries to prepare the students for interdisciplinary research.

DEPARTMENT VISION

To empower the students to be technologically adept, innovative, self-motivated and responsible global citizen possessing human values and contribute significantly towards high quality technical education with ever changing world.

DEPARTMENT MISSION

- To offer high-quality education in the computing fields by providing an environment where the knowledge is gained and applied to participate in research, for both students and faculty.
- To develop the problem solving skills in the students to be ready to deal with cutting edge technologies of the industry.
- To make the students and faculty excel in their professional fields by inculcating the communication skills, leadership skills, team building skills with the organization of various co-curricular and extra-curricular programmes.
- To provide the students with theoretical and applied knowledge, and adopt an education approach that promotes lifelong learning and ethical growth.

Programme Educational Objectives (PEO'S)

- Learn and Integrate: Graduates shall apply knowledge to solve computer science and allied engineering problems with continuous learning.
- **Think and Create:** Graduates are inculcated with a passion towards higher education and research with social responsibility.
- **Communicate and Organize:** Graduates shall pursue career in industry, empowered with professional and interpersonal skills.

PROGRAM OUTCOMES (POs)

PO1 ENGINEERING KNOWLEDGE:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 PROBLEM ANALYSIS:

Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 DESIGN/DEVELOPMENT OF SOLUTIONS:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 MODERN TOOL USAGE:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 THE ENGINEER AND SOCIETY:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 ENVIRONMENT AND SUSTAINABILITY:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 ETHICS:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 INDIVIDUAL AND TEAM WORK:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 COMMUNICATION:

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clearinstructions.

PO11 PROJECT MANAGEMENT AND FINANCE:

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 LIFE-LONG LEARNING:

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs)

PSO1: Ability to use professional, managerial, inter-disciplinary skill set and domain specific tools in development processes, identify the research gaps and provide innovative solutions. **PSO2**: An ability to succeed in competitive exams like GATE, GRE, IES, etc.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting time), those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the synopsis / program / experimentdetails.

3. Student should enter into the laboratorywith:

- a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the labsession.
- b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed in the lab.
- c. Proper Dress code and Identitycard.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system allotted to you by thefaculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which should be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severepunishment.

9. Students must take the permission of the faculty in case of any urgency to go out ; if anybody found loitering outside the lab / class without permission during working hours will be treated seriously and punishedappropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after completing the task (experiment) in all aspects. He/she must ensure the system / seat is keptproperly.

Machine Learning Lab

LIST OF EXPERIMENTS

S.No	Title of the Experiment	Page No	Marks	Signature
1.	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is theprobability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)			
2.	Extract the data from database using python			
3.	Implement k-nearest neighbours classification using python			
	Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of kmeans clustering with 3 means (i.e., 3 centroids) periments			
4.	VAR1 VAR2 CLASS 1.713 1.586 0 0.180 1.786 1 0.353 1.240 1 0.940 1.566 0 1.486 0.759 1 1.266 1.106 0 1.540 0.419 1 0.459 1.799 1 0.773 0.186 1			
5.	The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.			
	medium skiing design single twenties no -> highRisk			
	high golf trading married forties yes -> lowRisk			
	low speedway transport married thirties yes -> medRisk			
	medium football banking single thirties yes -> lowRisk			
	high flying media married fifties yes -> highRisk			
	low football security single twenties no -> medRisk			
	medium golf media single thirties yes -> medRisk			
	medium golf transport married forties yes -> lowRisk			
	high skiing banking single thirties yes -> highRisk			
	low golf unemployed married forties yes -> highRisk			
	Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability			

Ma	chine Le	arning Lab		
		of `golf' and the conditional probability of `single' given `medRisk' in the dataset?		
	6.	Implement linear regression using python.		
	7.	Implement Naïve Bayes theorem to classify the English text		
	8.	Implement an algorithm to demonstrate the significance of genetic algorithm		
	9.	Implement the finite words classification system using Back- propagation algorithm		

Course Outcomes:

After completion of this course the students will be able to

Course Outcome	Course Outcome Statement	Bloom's Taxonomylevel
C326.1	understand complexity of Machine Learning algorithms and their limitations	Understand
C326.2	understand modern notions in data analysis-oriented computing;	Understand
C326.3	be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;	Design
C326.4	Be capable of performing experiments in Machine Learning using real-world data.	Apply

Experiments mapping with course outcomes

Exp .No	Program description	РО	PSO/ PI's	C O	Justification
1	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is theprobability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)	1,2,3, 4,9	2/ 1.7.1	1	To find the Conditional propability using Baye's Rule.
2	Extract the data from database using python	1,2,3, 4,9	2/ 1.7.1	1	To Connect database and extreact data
3	Implement k-nearest neighbours classification using python	1,2,3, 4,9	2/ 1.7.1	1	To Implement k-nearest neighbours classification using python.
4	Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of kmeans clustering with 3 means (i.e., 3 centroids) periments VAR1 VAR2 CLASS 1.713 1.586 0 0.180 1.786 1 0.353 1.240 1 0.940 1.566 0 1.486 0.759 1 1.266 1.106 0 1.540 0.419 1 0.459 1.799 1 0.773 0.186 1	1,2,3, 4,9	2/ 1.7.1	1,2	Understand the concepts of Classification and Predictions
5	The following training examples map descriptions of	1,2,3,	2/	1,2	Understand the concepts
					9

Machi	ne Learning Lab				
	individuals onto high, medium and low credit- worthiness.	4,9	1.7.1		of Conditional propability
	medium skiing design single twenties no -> highRisk				
	high golf trading married forties yes -> lowRisk				
	low speedway transport married thirties yes -> medRisk				
	medium football banking single thirties yes -> lowRisk				
	high flying media married fifties yes -> highRisk				
	low football security single twenties no -> medRisk				
	medium golf media single thirties yes -> medRisk				
	medium golf transport married forties yes -> lowRisk				
	high skiing banking single thirties yes -> highRisk				
	low golf unemployed married forties yes -> highRisk				
	Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?				
6	Implement linear regression using python.	1,2,3, 4,9	2/ 1.7.1, 2.5.2, 1.6.1	4	Apply the Regression methods in python
7	Implement Naïve Bayes theorem to classify the English text	1,2,3, 4,9	2/ 1.7.1, 1.2.1	5	Understand the concepts of searching operations.
8	Implement an algorithm to demonstrate the significance of genetic algorithm	1,2,3, 4,9	2/ 1.7.1	3	To Implement an algorithm to demonstrate the significance of genetic algorithm
9	Implement the finite words classification system using Back-propagation algorithm	1,2,3, 4,9	2/ 1.7.1	3	To Implement the finite words classification system using Back-propagation algorithm

Course Outcomes Justification

	PO	PSO1	PSO2											
	1	2	3	4	5	6	7	8	9	10	11	12		
C326.1	2	2	3	2					2					2
C326.2	2	1	3	2					2				2	2
C326.3	2	2	3	1					2				2	2
C326.4	2	3	2	2					2					2

C217.1 Baye's Rule for Conditional Propability (Understand)

	Justification
PO1	Students can get the knowledge on various Machine Learning (Level-2)
PO2	Students are able to identify the appropriate Machine Learning based on the real world
	problem (Level-2)
PO3	Students can design the applications using Python (Level-3)
PO4	Students can able to investigate the complex problem and they can give solutions (Level-2)
PO9	Function effectively as an individual to understand the concept.(Level-2)
PSO2	Model appropriate techniques to succeed in competitive exams like Gate, Toffel and
	GRE

C217.2: Extract the data from database using python (Understand)

	Justification
PO1	Students can get the knowledge on various Machine Learning (Level-2)
PO2	Students are able to identify the appropriate Machine Learning based on the real world
	problem (Level-1)
PO3	Students can design the applications using various Machine Learning (Level-3)
PO4	Students can able to investigate the complex problem and they can give solutions
	(Level-2)
PO9	Function effectively as an individual to understand the concept. (Level-2)
PSO1	Student can able to do research in data structures.(Level 2)
PSO2	Student can attended Gate exams.(Level 2)

C217.3: Implement linear regression using python.(Design)

	Justification
PO1	Students can get the knowledge on various data structures (Level-2)
PO2	Students are able to identify the appropriate Data structure based on the real world
	problem (Level-2)
PO3	Students can design the applications using various data structures (Level-3)
PO4	Students can able to investigate the complex problem and they can give solutions
	(Level-2)
PO9	Function effectively as an individual to understand the concept. (Level-2)
PSO1	Student can able to do research in data structures.(Level 2)
PSO2	Student can attended Gate exams and Competitive exams.(Level 2)

C217.4: Implement Naïve Bayes theorem to classify the English text. (Apply)

	Justification
PO1	Students can get the knowledge on various Machine Learning (Level-2)
PO2	Students are able to analyze the real world problem and they can solve the problem by
	using various tech (Level-3)
PO3	Students can design the applications using various optimized techs (Level-2)
PO4	Students can able to investigate the complex problem and they can give solutions
	(Level-2)
PO9	Function effectively as an individual to understand the concept of Sorting (Level-2)
PSO2	Student can attended Gate exams and Competitive exams.(Level 2)

1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is theprobability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)

ALGORITHM:

- Step 1: Calculate probability for each word in a text and filter the words which have a probability less than threshold probability. Words with probability less than threshold probability are irrelevant.
- Step 2: Then for each word in the dictionary, create a probability of that word being in insincere questions and its probability insincere questions. Then finding the conditional probability to use in naive Bayes classifier.
- Step 3: Prediction using conditional probabilities.
- Step 4: End.

PROGRAM:

PFIA=float(input("Enter probability that it is Friday and that a student is absent=")) PF=float(input(" probability that it is Friday=")) PABF=PFIA / PF print("probability that a student is absent given that today is Friday using conditional probabilities=",PABF)

OUTPUT:

Enter probability that it is Friday and that a student is absent= 0.03 probability that it is Friday= 0.2 probability that a student is absent given that today is Friday using conditional probabilities= 0.15

2. Extract the data from database using python

ALGORITHM:

Step 1: Connect to MySQL from Python

Step 2: Define a SQL SELECT Query

Step 3: Get Cursor Object from Connection

Step 4: Execute the SELECT query using execute() method

Step 5: Extract all rows from a result

Step 6: Iterate each row

Step 7: Close the cursor object and database connection object

Step 8: End.

PROCEDURE

CREATING A DATABASE IN MYSQL AS FOLLOWS:

CREATE DATABASE myDB; SHOW DATABASES; USE myDB CREATE TABLE MyGuests (id INT, name VARCHAR(20), email VARCHAR(20)); SHOW TABLES; INSERT INTO MyGuests (id,name,email) VALUES(1,"sairam","<u>Xyz@abc.com</u>");

SELECT * FROM authors;

We need to install mysql-connector to connect Python with MySQL. You can use the below command to install this in your system.

pip install mysql-connector-python-rf

PYTHON SOURCE CODE:

import mysql.connector

```
mydb = mysql.connector.connect(
    host="localhost",
    user="root",
    password="",
    database="myDB"
)
```

fachine Learning Lab	cursor()		
mycursor.execute(("SELECT * FRO	DM MyGuests")	
myresult = mycurs	or.fetchall()		
for x in myresult: print(x)			
OUTPUT:			
Recent Favorites			
New information_schema	<pre> 2 rows inserted. INSERT INTO `myguests` (`Name`, ` </pre>	Address', `Designation', `Contact') <u>VALUES</u> ('pratap', 'hyd', 'professer', '9527366'), ('laxminarayana', 'hyd', 'associate Professor', '7	8945'); Create PH
mysuests mysql test wordpress	Run SQL query/queries on tal	<pre>ble mydb.myguests: Columns Name, `Address', `Designation', `Contact`) VALUES ('pratap', 'hyd', 'professer', '9527366'), Name Address Designation Contact</pre>	
	Admin	— 📻 Server: 127.0.0.1.» 🔿 Database: mydb.» 📼 Table: myguesi	s
		■ Browse M Structure SQL Search 3	Ins
Recent Favorite	S	Current selection does not contain a unique column. Grid edit	, che
New			
Information	_schema	Showing rows 0 - 1 (2 total, Query took 0.0005 seconds.)	
		SELECT * FROM `myguests`	
+-1/ myguest	ts		
⊕_⊚ mysql			
test ⊕_ wordpress		□ Show all Number of rows: 25 ∨ Filter rows:	Sea
		+ Options	
		Name Address Designation Contact pratap hvd professer 9527366	
		laxminarayana hyd associate Professor 78945	
	vstem32\ cmd avc		
C:\Windows\3	ystemsz\cmu.exe		
C:\Users\prat	ap\Desktop\ML	>python dbconnect.py	
('pratap', 'h	yd', 'profess na'. 'hvd'. '	er', 9527366) associate Professor', 78945)	
	ind y inyd y		
C:\Users\prat	ap\Desktop\ML	>_ 	
			15
			10

Extracting data from Excel sheet using Python

Step1: First convert dataset present in excel to CSV file using online resources, then execute following program:

consider dataset excel consists of 14 input columns and 3 output columns (C1, C2, C3)as follows:

Python Souce Code:

import pandas as pd

dataset=pd.read_csv("Mul_Label_Dataset.csv", delimiter=',')

print(dataset) **#Print entire dataset**

X =

dataset[['Send','call','DC','IFMSCV','MSCV','BA','MBZ','TxO','RS','CA','AL','IFWL','WWL','FWL']].values Y = dataset[['C1','C2','C3']].values**#Prints output values** print(Y)

#Prints intput values print(X)

X1 = dataset[['Send','call','DC','IFMSCV','MSCV']].values

print(X1) **#**Prints first 5 columns of intput values

print(X[0:5]) # Prints only first 5 rows of input values

OUTPUT SCREENS: Excel Format: CSV

A	В	C	D	E	F	G	H		J	K	L	Μ	N	0	Ρ	Q
Send	call	DC	IFMSCV	MSCV	BA	MBZ	TxO	RS	CA	AL	IFWL	WWL	FWL	C1	C2	C3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	2	2	2	0	2	0	0	0	0	0	1	0	1
0	0	0	1	2	2	1	0	0	2	0	0	0	0	0	0	1
0	0	0	2	2	2	0	0	0	0	0	2	0	0	1	0	1
2	2	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1
0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1
2	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	1

Format:

Send	d,ca	11,	DC,1	FMS	CV,MS	SCV, BA	A, MBZ,	, Tx0,	RS,C	A,AL,	IFWL,	WWL,	FWL,	C1,
0,0	0,0),0,	0,0,	0,0,	0,0,	0,0,0	0,0,0,	, 0						
0,0	,0,2	2,2,	2,2,	0,2,	0,0,	0,0,0), 1, 0,	,1						
0,0	,0,1	.,2,	2,1,	0,0,	2,0,	0,0,0	0,0,0,	,1						
0,0	,0,2	2,2,	2,0,	0,0,	0,0,	2,0,0), 1, 0,	,1						
2,2	,0,0),0,	0,0,	0,0,	0,0,	0,2,6	0,0,0,	,1						
0,2	,0,0),0,	0,0,	0,0,	0,0,	0,0,2	2,0,0,	,1						
2,0	0,0),0,	0,0,	0,2,	0,1,	0,0,0),0,0,	, 1						

3. Implement k-nearest neighbours classification using python

ALGORITHM:

Step 1: Load the data

Step 2: Initialize the value of k

Step 3: For getting the predicted class, iterate from 1 to total number of training data points

- i) Calculate the distance between test data and each row of training data. Here we will use Euclidean distance as our distance metric since it's the most popular method. The other metrics that can be used are Chebyshev, cosine, etc.
- ii) Sort the calculated distances in ascending order based on distance values 3. Get top k rows from the sorted array
- iii) Get the most frequent class of these rows i.e. Get the labels of the selected K entries
- iv) Return the predicted class [] If regression, return the mean of the K labels [] If classification, return the mode of the K labels
- If regression, return the mean of the K labels
- If classification, return the mode of the K labels

Step 4: End.

PROGRAM

import numpy as np from sklearn import datasets

```
iris = datasets.load_iris()
data = iris.data
labels = iris.target
```

for i in [0, 79, 99, 101]:

print(f"index: {i:3}, features: {data[i]}, label: {labels[i]}")

np.random.seed(42)

```
indices = np.random.permutation(len(data))
```

n_training_samples = 12

learn_data = data[indices[:-n_training_samples]]

learn_labels = labels[indices[:-n_training_samples]]

```
Machine Learning Lab
```

```
test_data = data[indices[-n_training_samples:]]
test_labels = labels[indices[-n_training_samples:]]
print("The first samples of our learn set:")
print(f"{'index':7s}{'data':20s}{'label':3s}")
for i in range(5):
    print(f"{i:4d} {learn_data[i]} {learn_labels[i]:3}")
print("The first samples of our test set:")
print(f"{'index':7s}{'data':20s}{'label':3s}")
```

for i in range(5):

 $print(f"\{i:4d\} \ \{learn_data[i]\} \ \{learn_labels[i]:3\}")$

#The following code is only necessary to visualize the data of our learnset

```
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
colours = ("r", "b")
X = []
for iclass in range(3):
    X.append([[], [], []])
    for i in range(len(learn_data)):
        if learn_labels[i] == iclass:
            X[iclass][0].append(learn_data[i][0])
            X[iclass][1].append(learn_data[i][1])
            X[iclass][2].append(sum(learn_data[i][2:]))
```

```
Machine Learning Lab

colours = ("r", "g", "y")

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

for iclass in range(3):

ax.scatter(X[iclass][0], X[iclass][1], X[iclass][2], c=colours[iclass])
```

plt.show()

#-----

def distance(instance1, instance2):

""" Calculates the Eucledian distance between two instances"""

return np.linalg.norm(np.subtract(instance1, instance2))

def get_neighbors(training_set, labels, test_instance, k, distance):

.....

get_neighors calculates a list of the k nearest neighbors of an instance 'test_instance'. The function returns a list of k 3-tuples. Each 3-tuples consists of (index, dist, label)

distances = []

```
for index in range(len(training_set)):
```

dist = distance(test_instance, training_set[index])

distances.append((training_set[index], dist, labels[index]))

```
distances.sort(key=lambda x: x[1])
```

```
neighbors = distances[:k]
```

return neighbors

Machine Learning Lab

for i in range(5):

neighbors = get_neighbors(learn_data, learn_labels, test_data[i], 3, distance=distance)

print("Index: ",i,'\n',

"Testset Data: ",test_data[i],'\n',

"Testset Label: ",test_labels[i],'\n',

"Neighbors: ",neighbors,'\n')

OUTPUT:

(base)	dohat	thi@d	lohat	thi-C	ompaq-1	5-No	oteboo	k-PC:~/	ML_LAB\$	python	KNN.py
index:	Θ,	feat	ures	5: [5	.1 3.5	1.4	0.2],	label:	Θ		
index:	79,	feat	ures	s: [5	.7 2.6	3.5	1.],	label:	1		
index:	99,	feat	ures	s: [5	.7 2.8	4.1	1.3],	label:	1		
index:	101,	feat	ures	5: [5	.8 2.7	5.1	1.9],	label:	2		
The fi	rst sa	ample	s of	F our	learn	set:					
index	data				labe	ι					
Θ	[6.1	2.8	4.7	1.2]	1						
1	[5.7	3.8	1.7	0.3]	Θ						
2	[7.7	2.6	6.9	2.3]	2						
3	[6.	2.9	4.5	1.5]	1						
4	[6.8	2.8	4.8	1.4]	1						
The fi	rst sa	ample	s of	F our	test s	et:					
index	data				labe	ι					
Θ	[6.1	2.8	4.7	1.2]	1						
1	[5.7	3.8	1.7	0.3]	0						
2	[7.7	2.6	6.9	2.3]	2						
3	[6.	2.9	4.5	1.5]	1						
4	[6.8]	2.8	4.8	1.4]	1						

20

```
Index:
               2
Testset Data: [6.3 2.3 4.4 1.3]
Testset Label: 1
                [(array([6.2, 2.2, 4.5, 1.5]), 0.26457513110645864, 1),
Neighbors:
(array([6.3, 2.5, 4.9, 1.5]), 0.574456264653803, 1), (array([6. , 2.2, 4
, 1. ]), 0.5916079783099617, 1)]
Index:
               з
Testset Data:
                [6.4 2.9 4.3 1.3]
Testset Label: 1
Neighbors:
                 [(array([6.2, 2.9, 4.3, 1.3]), 0.2000000000000018, 1),
(array([6.6, 3., 4.4, 1.4]), 0.2645751311064587, 1), (array([6.6, 2.9,
4.6, 1.3]), 0.3605551275463984, 1)]
Index:
Testset Data:
                [5.6 2.8 4.9 2.]
Testset Label:
Neighbors:
                [(array([5.8, 2.7, 5.1, 1.9]), 0.31622776601683755, 2),
(array([5.8, 2.7, 5.1, 1.9]), 0.31622776601683755, 2), (array([5.7, 2.5,
5. , 2. ]), 0.33166247903553986, 2)]
```

4. Implement linear regression using python

ALGORITHM:

Step 1: Create Database for Linear RegressionStep 2:Finding Hypothesis of Linear RegressionStep 3:Training a Linear Regression modelStep 4:Evaluating the modelStep 5: Scikit-learn implementationStep 6: End

PROGRAM:

Importing Necessary Libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

generate random data-set

np.random.seed(0)

x = np.random.rand(100, 1) #Generate a 2-D array with 100 rows, each row containing 1 random numbers:

```
y = 2 + 3 * x + np.random.rand(100, 1)
```

regression_model = LinearRegression() # Model initialization

regression_model.fit(x, y) # Fit the data(train the model)

y_predicted = regression_model.predict(x) # Predict

model evaluation

rmse = mean_squared_error(y, y_predicted)

r2 = r2_score(y, y_predicted)

printing values
print('Slope:' ,regression_model.coef_)
print('Intercept:', regression_model.intercept_)

Machine Learning Lab
print('Root mean squared error: ', rmse)
print('R2 score: ', r2)
plotting values # data points
plt.scatter(x, y, s=10)
plt.xlabel('x-Values from 0-1')
plt.ylabel('y-values from 2-5')
predicted values
plt.plot(x, y_predicted, color='r')
plt.show())

OUTPUT:

5. Implement K-Means_Clustering using python

ALGORITHM:

Step 1: Read the Given data Sample to X
Step 2: Train Dataset with K=5
Step 3: Find optimal number of clusters(k) in a dataset using Elbow method
Step 4: Train Dataset with K=3 (optimal K-Value)
Step 4: Compare results
Step 6: End

PROGRAM:

#Import libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn import datasets

#Read DataSet

df = datasets.load_iris() x = df.data y = df.target

print(x)
print(y)

#Lets try with k=5 initially

kmeans5 = KMeans(n_clusters=5)
y_kmeans5 = kmeans5.fit_predict(x)
print(y_kmeans5)

print(kmeans5.cluster_centers_)

To find optimal number of clusters(k) in a dataset

```
Error =[ ]
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i).fit(x)
    kmeans.fit(x)
    Error.append(kmeans.inertia_)
import matplotlib.pyplot as plt
plt.plot(range(1, 11), Error)
```

plt.title('Elbow method') plt.xlabel('No of clusters') plt.ylabel('Error') plt.show()

#Now try with k=3 finally

kmeans3 = KMeans(n_clusters=3)
y_kmeans3 = kmeans3.fit_predict(x)
print(y_kmeans3)

print(kmeans3.cluster_centers_)

OUTPUT:

kmeans5.cluster_centers_

```
array([[5.006 , 3.418 , 1.464 , 0.244 ],
[6.52916667, 3.05833333, 5.50833333, 2.1625 ],
[5.508 , 2.6 , 3.908 , 1.204 ],
[7.475 , 3.125 , 6.3 , 2.05 ],
[6.20769231, 2.85384615, 4.74615385, 1.56410256]])
```


6. Implement Naive Bayes Theorem to Classify the English Text using python

The Naive Bayes algorithm

Naive Bayes classifiers are a collection of classification algorithms based on **Bayes' Theorem**. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other.

The dataset is divided into two parts, namely, **feature matrix** and the **response/target vector**.

- The **Feature matrix** (X) contains all the vectors(rows) of the dataset in which each vector consists of the value of **dependent features**. The number of features is **d** i.e. **X** = (**x1**,**x2**,**x2**, **xd**).
- The **Response/target vector** (y) contains the value of **class/group variable** for **each row of feature matrix.**

Now the "naïve" <u>conditional independence</u> assumptions come into play: assume that all features in X are <u>mutually independent</u>, conditional on the category y:

Dealing with text data

```
from sklearn.feature_extraction.text import CountVectorizer
corpus = [
    'This is the first document.',
    'This document is the second document.',
    'And this is the third one.'
    'Is this the first document?'
]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third',
'this']
print(X.toarray())
[[0 1 1 1 0 0 1 0 1]
 [020101101]
 [1 0 0 1 1 0 1 1 1]
 [0 1 1 1 0 0 1 0 1]
```

The values 0,1,2, encode the frequency of a word that appeared in the initial text data.

Machine Learning Lab E.g. The first transformed row is [0 1 1 1 0 0 1 0 1] and the unique vocabulary is ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this'], thus this means that the words "document", "first", "is", "the" and "this" appeared 1 time each in the initial text string (i.e. 'This is the first document.'). In our example, we will convert the collection of text documents (train and test sets) into a matrix of token counts. To implement that text transformation we will use the **make_pipeline** function. This will internally transform the text data and then the model will be fitted **using the transformed data**. **Source Code** print("NAIVE BAYES ENGLISH TEST CLASSIFICATION") import numpy as np, pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature extraction.text import TfidfVectorizer from sklearn.naive bayes import MultinomialNB from sklearn.pipeline import make_pipeline from sklearn.metrics import confusion_matrix, accuracy_score sns.set() # use seaborn plotting style # Load the dataset data = fetch_20newsgroups()# Get the text categories text_categories = data.target_names# define the training set train_data = fetch_20newsgroups(subset="train", categories=text_categories)# define the test set test_data = fetch_20newsgroups(subset="test", categories=text_categories) print("We have {} unique classes".format(len(text_categories))) print("We have {} training samples".format(len(train_data.data))) print("We have {} test samples".format(len(test_data.data))) # let's have a look as some training data let it 5th only #print(test_data.data[5]) # Build the model model = make_pipeline(TfidfVectorizer(), MultinomialNB())# Train the model using the training data model.fit(train_data.data, train_data.target)# Predict the categories of the test data predicted_categories = model.predict(test_data.data) print(np.array(test_data.target_names)[predicted_categories]) 28

Machine Learning Lab		

plot the confusion matrix

mat = confusion_matrix(test_data.target, predicted_categories)sns.heatmap(mat.T, square = True, annot=True, fmt =xticklabels=train_data.target_names,yticklabels=train_data.target_names)

plt.xlabel("true labels")

plt.ylabel("predicted label")

plt.show()

print("The accuracy is {}".format(accuracy_score(test_data.target, predicted_categories)))

OUTPUT:

L_Programs\$ python NB_NaiveBayes.py Whether: [2 2 0 1 1 1 0 2 2 1 2 0 0 1] Temp: [1 1 1 2 0 0 0 2 0 2 2 2 2 1 2] Play: [0 0 1 1 1 0 1 0 1 1 1 1 1 0] Features: [(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 2), (0, 1), (1, 2)] Predicted Value for the input 0:Overcast, 2:Mild: [1] NAIVE BAYES ENGLISH TEST CLASSIFICATION We have 20 unique classes We have 11314 training samples We have 7532 test samples

	alt.atheism	166	51	0	0	0	1	0	0	0	0	0	0	0	2	0	2	0	0	2	33			
	comp.graphics	0	252	14	5	3	21	1	1	0	0	0	2	4	3	2	0	0	1	0	2			254
	comp.os.ms-windows.misc	0	15	258	311	8	17	3	0	0	0	0	1	2	0	0	0	0	0	0	0		-	351
	comp.sys.ibm.pc.hardware	1	12	45	305	23	13	31	3	1	0	0	0	17	1	1	0	1	0	0	0			
	comp.sys.mac.hardware	0	9	3	17	298	32	12	0	0	1	0	0	5	1	0	0	0	0	0	0		-	30(
	comp.windows.x	1	18	9	1	0	298	1	0	0	0	0	1	0	3	3	0	0	0	0	0			
	misc.forsale	0	1	0	3	3	1	271	4	2	0	0	1	2	1	0	0	2	0	0	0			
	rec.autos	0	2	2	6	8	0	19	364	10	4	1	3	8	0	2	0	0	0	1	0			250
abe	rec.motorcycles	1	1	1	1	1	1	4	3	371	0	0	0	7	2	1	1	1	0	0	0			
20	rec.sport.baseball	1	5	3	0	3	1	4	2	0	357	4	0	1	3	0	0	1	1	0	1			201
<u>U</u>	rec.sport.hockey	1	2	2	2	1	0	6	2	0	22	387	0	2	4	1	0	0	0	1	1			
red	sci.crypt	3	41	25	19	16	23	5	4	4	0	1	383	78	11	6	0	10	2	11	3			
d	sci.electronics	0	4	1	13	8	0	12	1	0	0	0	1	235	5	1	0	0	0	0	0			15
	sci.med	6	0	0	0	0	1	6	1	0	0	0	0	31	292	2	1	0	0	1	4			
	sci.space	3	6	6	5	2	4	3	3	0	2	1	0	11	6	351	2	1	0	7	4		_	10
	soc.religion.christian	123	315	23	3	8	10	9	3	8	9	5	3	15	52	19	392	6	24	35	131			10
	talk.politics.guns	4	4	2	1	3	2	3	4	2	1	0	1	2	6	4	0	341	3	118	29			
	talk.politics.mideast	8	1	0	0	0	0	0	0	0	1	0	0	1	4	0	0	1	344	5	5			50
	talk.politics.misc	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	129	3			
	talk.religion.misc	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35			0
		theism	raphics	vs.misc	rdware	Irdware	dows.x	forsale	c.autos	rcycles	aseball	hockey	ci.crypt	tronics	sci.med	i.space	hristian	cs.guns	nideast	cs.misc	on.misc			0

"d",

7. Implement an algorithm to demonstrate the significance of Genetic Algorithm in python

ALGORITHM:

- 1. Individual in population compete for resources and mate
- 2. Those individuals who are successful (fittest) then mate to create more offspring than others
- 3. Genes from "fittest" parent propagate throughout the generation, that is sometimes parents create offspring which is better than either parent.
- 4. Thus each successive generation is more suited for their environment.

Operators of Genetic Algorithms

Once the initial generation is created, the algorithm evolve the generation using following operators – **1) Selection Operator:** The idea is to give preference to the individuals with good fitness scores and allow them to pass there genes to the successive generations.

2) Crossover Operator: This represents mating between individuals. Two individuals are selected using selection operator and crossover sites are chosen randomly. Then the genes at these crossover sites are exchanged thus creating a completely new individual (offspring).

3) Mutation Operator: The key idea is to insert random genes in offspring to maintain the diversity in population to avoid the premature convergence.

Given a target string, the goal is to produce target string starting from a random string of the same length. In the following implementation, following analogies are made –

- Characters A-Z, a-z, 0-9 and other special symbols are considered as genes
- A string generated by these character is considered as chromosome/solution/Individual

Fitness score is the number of characters which differ from characters in target string at a particular index. So individual having lower fitness value is given more preference.

Source Code

Python3 program to create target string, starting from # random string using Genetic Algorithm

import random

Number of individuals in each generation
POPULATION_SIZE = 100

```
# Valid genes
GENES = "'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP
QRSTUVWXYZ 1234567890, .-;:_!''#%&/()=?@${[]}"'
```

```
# Target string to be generated
TARGET = "I love GeeksforGeeks"
```

```
class Individual(object):
```

```
Class representing individual in population ""
def __init__(self, chromosome):
    self.chromosome = chromosome
    self.fitness = self.cal_fitness()
```

```
@classmethod
```

```
def mutated_genes(self):
```

```
create random genes for mutation
```

```
global GENES
gene = random.choice(GENES)
return gene
```

```
@classmethod
```

```
def create_gnome(self):
    ""
```

```
create chromosome or string of genes
""
global TARGET
```

```
Machine Learning Lab
    gnome_len = len(TARGET)
    return [self.mutated_genes() for _ in range(gnome_len)]
  def mate(self, par2):
    m
           Perform mating and produce new offspring
    # chromosome for offspring
    child_chromosome = []
    for gp1, gp2 in zip(self.chromosome, par2.chromosome):
       # random probability
       prob = random.random()
       # if prob is less than 0.45, insert gene
       # from parent 1
       if prob < 0.45:
         child_chromosome.append(gp1)
       # if prob is between 0.45 and 0.90, insert
       # gene from parent 2
       elif prob < 0.90:
         child_chromosome.append(gp2)
       # otherwise insert random gene(mutate),
       # for maintaining diversity
       else:
         child_chromosome.append(self.mutated_genes())
    # create new Individual(offspring) using
    # generated chromosome for offspring
    return Individual(child_chromosome)
  def cal_fitness(self):
           Calculate fittness score, it is the number of
    characters in string which differ from target string.
                                                           ...
    global TARGET
    fitness = 0
    for gs, gt in zip(self.chromosome, TARGET):
       if gs != gt: fitness+= 1
    return fitness
# Driver code
def main():
  global POPULATION_SIZE
  #current generation
  generation = 1
                                                                                                   32
```

found = False

```
population = []
# create initial population
for _ in range(POPULATION_SIZE):
       gnome = Individual.create_gnome()
       population.append(Individual(gnome))
while not found:
  # sort the population in increasing order of fitness score
  population = sorted(population, key = lambda x:x.fitness)
  # if the individual having lowest fitness score ie.
  # 0 then we know that we have reached to the target
  # and break the loop
  if population[0].fitness <= 0:
    found = True
    break
  # Otherwise generate new offsprings for new generation
  new_generation = []
  # Perform Elitism, that mean 10% of fittest population
  # goes to the next generation
  s = int((10*POPULATION_SIZE)/100)
  new_generation.extend(population[:s])
  # From 50% of fittest population, Individuals
  # will mate to produce offspring
  s = int((90*POPULATION_SIZE)/100)
  for _ in range(s):
    parent1 = random.choice(population[:50])
     parent2 = random.choice(population[:50])
     child = parent1.mate(parent2)
    new_generation.append(child)
  population = new_generation
  print("Generation: {}\tString: {}\tFitness: {}".\
      format(generation,
      ".join(population[0].chromosome),
     population[0].fitness))
  generation += 1
```

```
print("Generation: {}\tString: {}\tFitness: {}".\
    format(generation,
    "".join(population[0].chromosome),
    population[0].fitness))
```

if ___name___ == '___main___':

main()

OUTPUT:

```
Generation: 1
                 String: t0{"-?=jH[k8=B4]0e@}
                                                 Fitness: 18
Generation: 2
                 String: t0{"-?=jH[k8=B4]0e@}
                                                 Fitness: 18
Generation: 3
                 String: .#lRWf9k Ifslw #0$k
                                                 Fitness: 17
Generation: 4
                 String: .-1Rq?9mHqk3Wo]3rek
                                                 Fitness: 16
Generation: 5
                 String: .-1Rq?9mHqk3Wo]3rek
                                                 Fitness: 16
                 String: A#ldW) #llkslw cVek)
Generation: 6
                                                 Fitness: 14
Generation: 7
                 String: A#ldW) #llkslw cVek)
                                                 Fitness: 14
Generation: 8
                 String: (, o x x%Rs=, 6Peek3
                                                 Fitness: 13
Generation: 29
                  String: I lope Geeks#o, Geeks
                                                  Fitness: 3
                  String: I loMe GeeksfoBGeeks
Generation: 30
                                                  Fitness: 2
Generation: 31
                  String: I love Geeksfo0Geeks
                                                  Fitness: 1
Generation: 32
                  String: I love Geeksfo0Geeks
                                                  Fitness: 1
Generation: 33
                  String: I love Geeksfo0Geeks
                                                  Fitness: 1
                  String: I love GeeksforGeeks
Generation: 34
                                                  Fitness: 0
```

8. Implement an algorithm to demonstrate Back Propagation Algorithm in python

ALGORITHM:

It is the most widely used algorithm for training artificial neural networks. In the simplest scenario, the architecture of a neural network consists of some sequential layers, where the layer numbered i is connected to the layer numbered i+1. The layers can be classified into 3 classes:

- 1. Input
- 2. Hidden
- 3. Output

Usually, each neuron in the hidden layer uses an activation function like sigmoid or rectified linear unit (ReLU). This helps to capture the non-linear relationship between the inputs and their outputs. The neurons in the output layer also use activation functions like sigmoid (for regression) or SoftMax (for classification).

To train a neural network, there are 2 passes (phases):

- Forward
- Backward

The forward and backward phases are repeated from some epochs. In each epoch, the following occurs:

- 1. The inputs are propagated from the input to the output layer.
- 2. The network error is calculated.
- **3.** The error is propagated from the output layer to the input layer.

Knowing that there's an error, what should we do? We should minimize it. To minimize network error, we must change something in the network. Remember that the only parameters we can change are the weights and biases. We can try different weights and biases, and then test our network.

```
Source Code:
import numpy
import matplotlib.pyplot as plt
def sigmoid(sop):
  return 1.0/(1+numpy.exp(-1*sop))
def error(predicted, target):
  return numpy.power(predicted-target, 2)
def error_predicted_deriv(predicted, target):
  return 2*(predicted-target)
def sigmoid_sop_deriv(sop):
  return sigmoid(sop)*(1.0-sigmoid(sop))
def sop_w_deriv(x):
  return x
def update_w(w, grad, learning_rate):
  return w - learning_rate*grad
x1=0.1
x2=0.4
target = 0.7
learning_rate = 0.01
w1=numpy.random.rand()
w2=numpy.random.rand()
print("Initial W : ", w1, w2)
predicted_output = []
network_error = []
old_err = 0
for k in range(80000):
  # Forward Pass
  y = w1*x1 + w2*x2
  predicted = sigmoid(y)
  err = error(predicted, target)
  predicted_output.append(predicted)
  network_error.append(err)
  # Backward Pass
```

```
g1 = error_predicted_deriv(predicted, target)
 g2 = sigmoid\_sop\_deriv(y)
  g3w1 = sop_w_deriv(x1)
  g3w2 = sop_w_deriv(x2)
  gradw1 = g3w1*g2*g1
  gradw2 = g3w2*g2*g1
  w1 = update_w(w1, gradw1, learning_rate)
  w2 = update_w(w2, gradw2, learning_rate)
  #print(predicted)
plt.figure()
plt.plot(network_error)
plt.title("Iteration Number vs Error")
plt.xlabel("Iteration Number")
plt.ylabel("Error")
plt.show()
plt.figure()
plt.plot(predicted_output)
plt.title("Iteration Number vs Prediction")
plt.xlabel("Iteration Number")
plt.ylabel("Prediction")
plt.show()
```


9. Implementing FIND-S algorithm using python

Training Database

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

TABLE 2.1

Positive and negative training examples for the target concept EnjoySport.

<u>Algorithm</u>

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a, in h

If the constraint a, is satisfied by x

Then do nothing

Else replace a, in h by the next more general constraint that is satisfied by x 3. Output hypothesis h

Hypothesis Construction

	$h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 0 \rangle$
x1 = <sunny normal="" same="" strong="" warm="">, +</sunny>	h1 = <sunny normal="" same="" strong="" warm=""></sunny>
x2 = <sunny high="" same="" strong="" warm="">, +</sunny>	h2 = <sunny ?="" same="" strong="" warm=""></sunny>
$x_3 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change>, -$	h3 = <sunny ?="" same="" strong="" warm=""></sunny>
$x_4 = \langle Sunny Warm High Strong Cool Change \rangle, +$	h ₄ = <sunny ?="" strong="" warm=""></sunny>

Source Code:

```
with open('enjoysport.csv', 'r') as csvfile:
  for row in csv.reader(csvfile):
     a.append(row)
  print(a)
print("\n The total number of training instances are : ",len(a))
num_attribute = len(a[0])-1
print("\n The initial hypothesis is : ")
hypothesis = ['0']*num_attribute
print(hypothesis)
for i in range(0, len(a)):
  if a[i][num_attribute] == 'TRUE':
                                                #for each positive example only
     for j in range(0, num_attribute):
          if hypothesis[j] == '0' or hypothesis[j] == a[i][j]:
             hypothesis[j] = a[i][j]
          else:
             hypothesis[j] = '?'
  print("\n The hypothesis for the training instance {} is : \n".format(i+1),hypothesis)
print("\n The Maximally specific hypothesis for the training instance is ")
```

print(hypothesis)

OUTPUT:

```
[kln@localhost ML_Programs]$ python FindS.py
[['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'TRUE'], ['Sunny', 'Warm', 'High', 'Strong',
 'Warm', 'Same', 'TRUE'], ['Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'FALSE'], ['Sunny
 ', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'TRUE']]
('\n The total number of training instances are : ', 4)
The initial hypothesis is :
 ['0', '0', '0', '0', '0']
('\n The hypothesis for the training instance 1 is : \n', ['Sunny', 'Warm', 'Normal', 'Strong', 'W
arm', 'Same'])
('\n The hypothesis for the training instance 2 is : \n', ['Sunny', 'Warm', '?', 'Strong', 'Warm',
 'Same'])
('\n The hypothesis for the training instance 3 is : \n', ['Sunny', 'Warm', '?', 'Strong', 'Warm',
 'Same'])
('\n The hypothesis for the training instance 4 is : \n', ['Sunny', 'Warm', '?', 'Strong', '?', '?
 '])
The Maximally specific hypothesis for the training instance is
 ['Sunny', 'Warm', '?', 'Strong', '?', '?']
```

10. Implementing Candidate Elimination algorithm using python

Training Database

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

TABLE 2.1

Positive and negative training examples for the target concept EnjoySport.

Algorithm

Initialize G to the set of maximally general hypotheses in HInitialize S to the set of maximally specific hypotheses in HFor each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d.
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S

¢

- If d is a negative example
 - · Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

Machine Learning Lab	
else:	
g[j][j]="?"	
print("\nSteps of Cane	lidate Elimination Algorithm",data.index(i)+1)
print(s)	
print(g)	
gh=[]	
for i in g:	
for j in i:	
if j!='?':	
gh.append(i)	
break	
print("\nFinal specific h	ypothesis:\n",s)
print("\nFinal general hypothesis:\n",gh)	

OUTPUT: