Course Code: 1910001

1910001 MLRITM- R19 MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech I Sem Supply End Examination, November 2020 MATHEMATICS-I (CIVIL, EEE, MECH, ECE, CSE & IT)

Time: 2 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Determine the rank of the following Matrix. $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	7M
	b)	Apply Gauss elimination method to solve the following equations. x + 4y - z = -5, $x + y - 6z = -12$, $3x - y - z = 4$	7M
2		Investigate the values of λ and μ so that the following system of equations $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$, have (i) no solution (ii) unique solution (iii) an infinite number of solution	14M
3	-	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$	7M
	b)	Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$	7M
4		Test the convergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \Lambda + \frac{2^n - 2}{2^n + 1}x^{n-1} + \Lambda \infty (x > 0).$	14M
5	a)	Reduce the quadratic form $2xy+2xz-2yz$ to canonical form.	7M
	1.5	$\sum n^n x^n$	714

b) Discuss the convergence of the series $\sum \frac{n^n x^n}{n!}$. 7M

6 Show that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$, where 0 < a < b < 1. Hence deduce that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\frac{3}{5} < \frac{\pi}{6} + \frac{1}{8}$.

7 a) State and prove the relationship between Beta and Gamma Functions. 7M

b) If
$$u = u\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0.$ 7M

8 A rectangular box open at the top is to have volume of 32 cubic feet. 14M Find the dimensions of the box requiring least material for its construction.

---00000----