Course Code: 1920006 Roll No: MLRS- R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech II Sem Supply End Examination, March 2021 APPLIED PHYSICS (EEE, CSE & IT)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	What are matter waves? Derive an expression for de-Broglie wavelength.	7M	CO1	R
	b)	Describe the Davisson and Germer experiment to demonstrate the wave nature of electrons.	7M	CO1	U
2	a)	What is Photoelectric effect? What are the essential physical assumptions needed to explain the characteristics of photoelectric effect?	7M	CO1	An
	b)	What is Compton effect? Give its physical significance. How does it support the photon nature of light?	7M	CO1	U
3	a)	What is Hall effect? Derive an expression for Hall coefficient.	7M	CO2	R
	b)	What are drift and diffusion currents in a pn-junction?	7M	CO2	U
4	a)	Explain the working principle of PIN and avalanche photo detectors. What are the materials used in photo detectors and mention their characteristics?	7M	CO3	U
	b)	What are the working steps of a solar cell?	7M	CO3	U
5	a)	Explain the construction and principle of operation of a Bipolar Junction Transistor.	7M	CO2	An
	b)	Explain how a PN diode acts as a Light Emitting Diode? What are the advantages of LEDs?	7M	CO3	An
6	a)	Describe the construction and working of CO_2 laser with its energy level diagram.	7M	CO	Ap
	b)	Write the medical and industrial applications of lasers.	7M	CO	U
7	a)	Define acceptance angle and numerical aperture. Deduce the expressions for the numerical aperture and acceptance angle.	7M	CO2	U
	b)	State the laws of electrostatics and derive equation of continuity.	7M	CO3	U
8	a)	Explain the classification of magnetic materials.	7M	CO4	An
	b)	What are the applications of magnetic materials? Explain Hysteresis.	7M	CO4	U