

II B.Tech II Sem Regular End Examination, August 2021 STRENGTH OF MATERIALS – II (CIVIL)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	A solid circular steel shaft is transmitting 200 horse power at 300 rpm. Determine the diameter of the shaft if the maximum shear stress is not to exceed $80N/mm^2$ and angular twist per meter length of the shaft is not to exceed 1^0 .	7M	C01	BL4
	b)	 An open coiled helical spring made from wire of circular cross-section is required to carry a load of 110 N. The wire diameter is 8mm and means coil radius is 48 mm. If the helix angle of the spring is 30^o and the number of turns is 12, Calculate: i) Axial deflection ii) Angular rotation of free end with respect to the fixed end of the spring. 	7M	C01	BL4
2	a)	Deduce the simple torsion equation of a circular shafts	7M	C01	BL3
	b)	An open coil helical spring made of 10 mm wire and mean dia 100mm has 12 No. of coils, angle of helix being 15 ⁰ . Determine the axial deflection and the intensities of bending and shear stress under a load of 500 N. Take C=80 GPa ; E=200 GPa	7M	C01	BL4
3	a)	Derive secant and Perry's formula for a column	7M	CO2	BL4
	b)	A steel strut, 1 m long , is 30 mm in diameter. It is subjected to an axial thrust of 18 kN. In addition, a lateral load W acts at the centre of the strut. If the strut fails at a maximum stress of 350 MN/m ² , determine the magnitude of W. Take $E= 210 \text{ GN/m}^2$	7M	CO2	BL4
4	a)	From fundamentals, derive an expression for Euler's critical load for a column with one end fixed and other end hinged. State the assumptions made in the derivation.	7M	CO2	BL4
	b)	Explain determination of stresses in the case of chimney.	7M	CO3	BL3
5	a)	Discuss briefly the stresses in beams subjected to unsymmetrical bending.	7M	CO3	BL3
	b)		7M	CO3	BL4

6	a)	Calculate change in diameter, change in length and change in volume of a thin cylindrical shell 100cm diameter, 1cm thickness and 5m long when subjected to internal pressure of $3N/mm^2$, take the value of $E = 2 \times 10^5 N/mm^2$ and poisson's ratio $\mu = 0.3$	7M	CO4	BL4
	b)	Write in detail about the assumptions of thin cylinders.	7M	CO4	BL3
7	a)	Calculate the thickness of the metal necessary for a steel cylinder shell of internal diameter 0.15 m to withstand an internal pressure of 50 MN/m^2 ; the maximum permissible tensile stress is not to exceed 150 MN/m^2	7M	CO4	BL3
	b)	Show that the product of inertia of a T section about a centroidal axis is zero.	7M	C05	BL4
8	a)	Determine the stresses and deflection at the midpoint of a channel section by unsymmetrical method. Also identify the position of the neutral axis.	7M	C05	BL4
	b)	A cantilever 2.8 m long having T section with flange 12 cm x 2 cm and web 13 cm x 2 cm carries a concentrated load W its free end but inclined at an angle of 45° to the vertical. Determine the maximum value of W if the deflection at the free end is not to exceed 2 mm. assume E = 200 X 10 ³ N/mm ² . What is the direction of neutral axis with respect to the vertical axis.	7M	CO5	BL4

---00000----