

II B.Tech II Sem Regular End Examination, July 2021 DISCRETE MATHEMATICS (CSE & INF)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	What is a Well Formed Formula? What are rules of the Well Formed Formulas?	7M	CO	BL
	b)	Obtain the PCNF of the following formula $(\sim P \rightarrow R) \land (Q \rightarrow P)$ (i) Using Truth Table.	7M	CO	BL
2	a)	Show that the following statement is tautology or not. $(\sim P \land (P \rightarrow Q)) \rightarrow \sim Q$	7M	CO	BL
	b)	Discuss in brief about Rules of inference.	7M	CO	BL
3	a)	Let X = $\{1, 2, 3, 4, 5, 6, 7\}$ and R= $\{(x,y)/x-y \text{ is divisible by } 3\}$ in X. show that R is an Equivalence Relation.?	7M	CO	BL
	b)	How many relations are there on a set with `n' elements? If a set A has `m' elements and a set B has `n' elements, how many relations are there from A to B? If a set A = $\{1, 2\}$, determine all relations from A to A.	7M	CO	BL
4	a)	Let A = {1, 2, 3, 4}and P ={{1, 2,3},{4}} be a partition of A. Find the equivalence relation determined by P. ?	7M	CO	BL
	b)	Define Recursion? Write in brief about recursive functions?	7M	CO	BL
5	a)	What is an algorithm? Write in brief about complexities of an algorithm?	7M	CO	BL
	b)	Describe in brief about Strong Induction and Well-Ordering?	7M	CO	BL
6	a)	In a class of 100 students 50 students play chess, 20 students play cricket and 10 students play volley ball, 15 students can play both cricket and chess, 5 students can play chess and volleyball, 3 students can play volleyball and cricket, 1 student can play all 3 games then find out number of students who does not play cricket & volleyball & chess?	7M	CO	BL
	b)	Solve the recurrence relation u _n +2-u _n +1-12u _n =10, u ₁ =13, u0=0	7M	CO	BL
7	a)	Solve the recurrence relation $u_n+2+4u_n+1+3u_n=5(-2)^n$, $u_0=1,u_1=0$ using generating function.	7M	CO	BL
	b)	Write the rules for constructing Hamiltonian paths and cycles?	7M	CO	BL
8	a)	How many vertices will the graph contain 6 edges and all vertices of degree 3?	7M	CO	BL
	b)	Prove that a connected plane graph with 7 vertices and degree $(V) = 4$ for each vertex V of G must have 8 regions of degree 3 and one region of degree 4.	7M	CO	BL