

II B.Tech II Sem Regular End Examination, July 2021 Laplace Transforms, Numerical Methods and Complex Variables (EEE & ECE)

Time: 3 Hours.

1

Max. Marks: 70

14M CO

BL

Note: 1. Answer any FIVEquestions.

2. Each question carries 14 marks and may have a, b as sub questions.

Solve the differential equation using Laplace transforms

		$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = e^{-t}; x(0) = 0, x'(0) = 1.$			
2	a)	State convolution theorem and evaluate $L^{-1}\left\{\frac{1}{(s^2+1)(s^2+9)}\right\}$ using convolution theorem.	7M	CO	BL
	b)	Find the Laplace transform of $f(t) = t - 1 + t + 1 , t \ge 0$.	7M	CO	BL
3		Using Lagrange formula express the function $\frac{x^2+6x-1}{(x^2-1)(x-4)(x-6)}$ as a sum of partial fractions.	14M	CO	BL
4	a)	Find up to the four places of decimals the smallest root of the equation $e^{-x} = \sin x$ using Newton-Raphson method.	7M	CO	BL
	b)	Evaluate $\int_0^{\pi/2} e^{\sin x} dx$ taking $h = \pi/6$ using Trapezoidal rule.	7M	CO	BL
5		Using modified Euler's method, find an approximate value of <i>y</i> when <i>x</i> =1.2 in step size of 0.1, given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^{2}}$, $y(1) = 1$.	14M	CO	BL
6	a)	If $f(z) = u + iv$ is an analytic function in a region R, prove that the curves $u(x, y) = c_1$, $v(x, y) = c_2$ form two orthogonal families.	7M	CO	BL
	b)	Find the real and imaginary parts of <i>tanhz</i> .	7M	CO	BL
7	a)	Find the analytic function whose real part is <i>xy</i> .	7M	CO	BL
	b)	State Maximum-Modulus theorem. Find the kind of singularity for the function $\frac{1}{\sin z - \cos z}$.	7M	CO	BL
8	a)	If $0 < z-1 < 2$ then express $f(z) = \frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z-1).	7M	CO	BL
	b)	Evaluate $\oint_c \frac{dz}{z^2 + 6iz}$ where <i>c</i> is the circle $ z = 1$ by using Cauchy's Residue theorem.	7M	CO	BL