Course Code: 1940418

Roll No:

MLRS- R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II SEM Supply End Examination, March 2022 Electronic Circuit Analysis (ECE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Derive an expression for hybrid- Π conductance in terms of low-frequency h-parameters.	7M	CO1	BL
	b)	Draw the circuit diagram of Darlington emitter follower and derive the expression for input impedance.	7M	CO1	BL
2	a)	Explain the working of cascade amplifier with neat circuit diagram.	7M	CO1	BL
	b)	A transistor biased at 5mA, 10V, h_{le} =600 Ω , h_{fe} =100, C_{C} =3pF and current gain of 10 at a frequency of 20MHz. Find β cut off frequency, gain band width product, $r_{b'e}$ and $r_{bb'}$.	7M	CO1	BL
3	a)	Outline the general characteristics of Negative Feedback Amplifiers.	7M	CO2	BL:
	b)	Draw the practical circuit for voltage series feedback amplifier and then find the voltage gain, input impedance and output impedance.	7M	CO2	BL
4	a)	Design a class-B power amplifier to deliver 25W to a load resistors $R_L=8\Omega$, using transformer coupling $V_m=V_{cc}=25V$, Assume reasonable data wherever necessary.	7M	CO2	BL
	b)	Briefly explain the concept of Thermal Stability.	7M	CO3	BL
5	a)	Draw Wein Bridge Oscillator circuit diagram and then derive the expression for condition for Oscillations and Frequency of Oscillations.	10M	CO3	BL
	b)	Explain why RC Phase shift oscillators are not used at high frequencies.	4M	CO3	BL
6	a)	Explain the basic operation of small-signal single Tuned Amplifier and then derive the expression for its bandwidth.	7M	CO4	BL
	b)	In what way Tuned Amplifier is different from other normal Voltage Amplifier?	7M	CO4	BL
7	a)	Discuss the principle operation of series-fed Class-A Amplifier with the help of circuit diagram and then prove that its maximum conversion efficiency is 25%.	7M	CO4	BL
	b)	What is a monostable multivibrator? Explain with the help of a neat circuit diagram the principle of operation of a monostable multivibrator.	7M	CO5	BL
8	a)	Design a one-shot multivibrator to develop an output pulse of $140\mu s$ duration. Assume $h_{femin}=20$, $i_{csat}=6mA$, $V_{cc}=6V$, $V_{bb}=-1.5V$	9M	CO5	BL
	b)	Discuss different methods improving linearity.	5M	CO5	BL