

## MARRI LAXMAN REDDY JTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

## III B.Tech I Sem Regular End Examination, January 2022

Power Systems - II (EEE)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
  - 2. In Part A, answer all questions which carries 20 marks.
  - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

## PART- A

(10\*2 Marks = 20 Marks)

| 1. | a) | Briefly explain about transmission line classification.                                                                                                      | 2M | CO1 | BL4 |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
|    | b) | What is Surge Impedance Loading (SIL) of the overhead lines?                                                                                                 | 2M | CO1 | BL1 |
|    | c) | Write short notes on on-load tap changing Transformer.                                                                                                       | 2M | CO2 | BL1 |
|    | d) | Distinguish between line and load compensation.                                                                                                              | 2M | CO2 | BL2 |
|    | e) | What do you mean by attenuation of a travelling voltage wave?                                                                                                | 2M | CO3 | BL1 |
|    | f) | A Generator is rated at 100MVA, 11kV, with sub-transient reactance of X"=0.2p.u. on its own base. Determine its sub-transient reactance on new 500 MVA base. | 2M | CO3 | BL3 |
|    | g) | Explain the importance of Ground resistance.                                                                                                                 | 2M | CO4 | BL4 |
|    | h) | What are Rod-Gaps? Explain briefly.                                                                                                                          | 2M | CO4 | BL4 |
| ٠  | i) | What are Symmetrical components? Explain their role in Fault Analysis.                                                                                       | 2M | CO5 | BL4 |
|    | j) | Explain the necessity of line reactors.                                                                                                                      | 2M | CO5 | BL4 |
|    |    |                                                                                                                                                              |    |     |     |

## PART-B

|   |    | (10*5 Marks                                                                                                                                                                                                                                             | ks = 50 Marks) |     |     |  |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-----|--|
| 2 | a) | Find the ABCD parameters of a 3-phase, 80km, 50Hz transmission line with series impedance of (0.15 + j 0.28) ohms per km and a shunt admittance of j $5x10-4$ ohm per km for the both $\Pi$ network.                                                    | 5M             | CO1 | BL3 |  |
|   | b) | Derive the expression for voltage and current through rigorous solution, of a long transmission line and give the interpretation of these line equations.                                                                                               | 5M             | CO1 | BL5 |  |
|   |    | OR                                                                                                                                                                                                                                                      |                |     |     |  |
| 3 |    | Write short notes on classification of Transmission lines. Also determine A, B, C, D parameters of the line 400 km long having (0.15+j0.28) ohms per km and a shunt admittance of j $5x10^{-4}$ mhos per km using the exact representation of the line. | 10M            | CO1 | BL3 |  |
|   |    |                                                                                                                                                                                                                                                         |                |     |     |  |
| 4 | a) | Distinguish between Uncompensated vs Compensated Transmission lines.                                                                                                                                                                                    | 5M             | CO2 | BL2 |  |
|   | b) | Briefly explain the concepts of Load Compensation methods.                                                                                                                                                                                              | 5M             | CO2 | BL4 |  |
|   |    |                                                                                                                                                                                                                                                         |                |     |     |  |

|    |    | OK .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| 5  |    | Explain transmission line voltage control methods and their advantages and disadvantages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10M | CO2 | BL4 |
| 6  | a) | Briefly discuss about the advantages of per unit system representation of power system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5M  | CO3 | BL2 |
|    | b) | Derive the expression for travelling wave in a power system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5M  | CO3 | BL5 |
|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |     |
| 7  |    | A 500kV, 2 $\mu s$ rectangular wave travels on a line having a surge impedance of $400\Omega$ and approaches a termination with a capacitance C equal to 300 pF. Determine the magnitudes of the reflected and transmitted waves.                                                                                                                                                                                                                                                                                                                                  | 10M | CO3 | BL3 |
| 8  | a) | Discuss various causes for over-voltages in the Power system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M  | CO4 | BL2 |
|    | b) | What is Insulation Coordination? Explain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5M  | CO4 | BL4 |
|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |     |
| 9  |    | With the help of a neat diagram explain the construction and working principle of Valve-Type Lightning Arrester.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10M | CO4 | BL4 |
| 10 | a) | Determine the all the sequence components for the un-balanced phasors given by $I_a = 10 / 0^{\circ} \text{ A} \qquad I_b = 10 / 180^{\circ} \text{ A} \qquad I_c = 0 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                   | 5M  | CO5 | BL3 |
|    | b) | Briefly explain the Short Circuit Capacity of a Bus. Mention its physical significance in the real world power system.                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5M  | C05 | BL4 |
|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |     |
| 11 |    | Two synchronous machines are connected through three-phase transformers to the transmission line as shown in figure below. The ratings and reactances of the machines and transformers are Machine 1 and 2: 100MVA, 20kV; $X_d$ " = $X_1$ = $X_2$ = 20%, $X_0$ =4%, $X_n$ =5% Transformers $T_1$ and $T_2$ : 100MVA, 20 Delta/345 Star kV; $X$ =8% On a chosen base of 100MVA, 345kV in the transmission-line circuit the line reactances are $X_1$ = $X_2$ =15% and $X_0$ =50%. For an LG fault on bus 2, find the sub-transient fault current in phase quantity. | 10M | CO5 | BL3 |
| ,  |    | Machine 1 $A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |