

MARRI LAXMAN REDDY

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

IV B.Tech I Sem Regular End Examination, Nov/Dec 2022 Utilization of Electrical Energy

(CIVIL)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

		(10*2 Ma	arks = 20 Marks)					
1.	a)	Give the classification of electric heating methods.	2M	CO1	BL1			
	b)	List out the properties of heating element.	2M	CO1	BL1			
	c)	What type of electric supply is suitable for electric arc welding?	2M	CO2	BL1			
	d)	Describe the principle of electrolysis.	2M	CO2	BL2			
	e)	Define Illumination?	2M	CO3	BL1			
	f)	What is Lamp Efficiency?	2M	CO3	BL1			
	g)	What are the factors governing the selection of motors?	2M	CO4	BL1			
	h)	Explain in detail the general consideration in selecting motor power	2M	CO4	BL4			
	i)	ratings. What are the different methods of obtaining unidirectional polarity constant output in single battery system?	2M	CO5	BL1			
	j)	Describe how 25KV AC supply is used for lighting.	2M	CO5	BL2			
		PART- B						
		(10*5 Mar	'KS = 5	0 Mari	ks)			
2	a)	Distinguish in detail between Direct Resistance heating and Indirect resistance heating.	5M	CO1	BL2			
	b)	Discuss about the criteria to select frequency for heating processes.	5M	CO1	BL2			

b) Discuss about the criteria to select frequency for heating processes. 5M CO1 BL2 OR 3 a) List out the advantages and explain about the applications of 5M CO1 BL1 dielectric heating. b) A slab of insulating material 150 cm² in area and 1cm thick is to be heated by dielectric heating. The power required is 400 W at 30 MHz. Material has relative permittivity of 5 and p.f. of 0.05. Absolute permittivity is 8.854×10-12 F/m. Determine the necessary voltage.

4	a)	What are the types of electrodes used for welding operation? Give	5M	CO ₂	BL1
		the advantages of coated electrodes.			
	b)	Explain in detail about resistance and arc welding.	5M	CO ₂	BL4

		OR						
5	a)	What is electroplating and electromagnetic strips?	5M	CO2	BL1			
	b)	Discuss about metal extraction and metal processing.	5M	CO2	BL2			
6	a)	Why tungsten is selected as filament material and on what factors its life depend?	5M	CO3	BL1			
	b)	A minimum illumination of 100 lumens/m^2 is required in the factory shed of $60 \text{ m} \times 15 \text{ m}$. calculate the number, the location and wattage of the units to be used. Assume that the depreciation factor is 0.76 , coefficient of utilization is 0.54 and efficiency of the lamp units is 20 lumens/watt .	5M	CO3	BL3			
	OR							
7	a)	Explain the construction and working of Sodium vapor lamp.	5M	CO3	BL4			
	b)	A 100 candle power lamp is hung 2m above the centre of a circular area of 3m diameter. Determine the illumination at i) The centre of the area ii) A point on the circumference of the area iii) Average illumination. Find also the average illumination of a reflector of 50% efficiency is used.	5M	C03	BL3			
8	a)	Explain the typical speed – time curve for electric train operating on passenger services.	5M	CO4	BL4			
	b)	The distance between two stops is 1.6 km. A schedule speed of 50 kmph is required to cover that distance. The stop is of 20 seconds duration. The values of the acceleration and retardation are 4 km/h/s and 6 km/h/s, respectively. Then, determine the maximum speed over the run. Assume a simplified trapezoidal speed-time curve.	5M	CO4	BL3			
OR								
9	a)	Explain the following terms: (i) Adhesive Weight (ii) Dead weight (iii) Coefficient of adhesion	5M	CO4	BL4			
	b)	What are the requirements of an ideal traction system? How are they met in an electric traction System?	5M	CO4	BL1			
					210			
10	a)	Describe about the double battery parallel block system.	5M	CO5	BL2			
	b)	What are the requirements of the train lighting?	5M	CO5	BL1			
		OR						
11	a)	Describe the different methods of obtaining unidirectional polarity constant output in single battery system.	5M	C05	BL2			
	b)	Write a note on coach wiring.	5M	CO5	BL1			

Course Code: 1970231 Roll No:

---00000---

MLRS-R19