

I B.Tech I Sem Regular End Examination, July 2021 ENGINEERING MATHEMATICS -I (EEE, CSE, INF, CSI & CSM)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVEquestions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	2)	Define normal form of a matrix	2M	CO	DI
1	a) b)	Find the values of k for which the system of equations (3k - 8)x + 3y + 3z = 0;	2M 12M	CO CO	BL BL
		3x + (3k - 8)y + 3z = 0; 3x + 3y + (3k - 8)z = 0 has a non-trivial solution.			
2	a)	Under what conditions Gauss-Seidal method is applicable.	2M	CO	BL
	b)	Use Gauss-Jordan method to find the inverse of the matrix $\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$.	12M	CO	BL
3		Diagonalize the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 2 & 2 & 4 \\ 4 & 1 & 3 \end{bmatrix}$.	7M	CO	BL
	b)	For a matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ find the eigenvalues of $3A^3 + 5A^2 - 6A + 2I$.	7M	CO	BL
4	a)	Expand log x in powers of $(x - 1)$ and hence evaluate log 1.1 correct to four decimal places.	7M	CO	BL
	b)	Prove that $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx = 0 \text{ using } \beta - \Gamma \text{ functions}$	7M	CO	BL
5	a)	Show that the two matrices A, A ^T have the same latent roots.	7M	CO	BL
	b)	Verify Rolle's theorem for the function $f(x) = x^{2m-1}(a-x)^{2n}$ in (0, a).	7M	CO	BL
6	a)	Verify Euler's theorem for the function $u = \frac{x^{1/2} + y^{1/2}}{x^n + y^n}$	7M	CO	BL
	b)	If $u = e^{a\theta} \cos(a \log r)$ then show that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$	7M	CO	BL
7	a)	Prove that the functions $\mathbf{u} = \mathbf{x} + \mathbf{y} + \mathbf{z}$, $\mathbf{v} = \mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z} + \mathbf{z}\mathbf{x}$, $\mathbf{w} = x^2 + y^2 + z^2$ are dependent and find the relation between them.	7M	CO	BL
	b)	Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.	7M	CO	BL
8	a)	Change the order of integration and solve $\int_0^c \int_{x^2/a}^{2a-x} xy^2 dy dx$.	7M	CO	BL
	b)	Find the area enclosed by the parabolas $x^2 = y$ and $y^2 = x$.	7M	CO	BL

---00000----