

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech I Sem Regular/Supply End Examination, April 2022 Engineering Physics

(Civil, Mechanical)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What are the different types of forces in nature	2M	CO1	BL2
	b)	Brief inertial and non-inertial frames.	2M	CO1	BL5
	c)	Discuss Quality factor of damped harmonic oscillator	2M	CO2	BL2
	d)	Distinguish between damped and forced oscillations	2M	CO2	BL4
	e)	What is reverberation time?	2M	CO3	BL2
	f)	What is acoustic quieting?	2M	CO3	BL1
	g)	Why does a diffraction grating have closely spaced rulings	2M	CO4	BL4
	h)	Differentiate between interference and diffraction	2M	CO4	BL4
	i)	What is population inversion? Explain the necessity of population inversion for lasing action	2M	CO5	BL1
	j)	What are the parts of an optical fibre and briefly explain them with neat diagram	2M	CO5	BL5

PART-B

(10*5 Marks = 50 Marks)

					- 0			
2	a)	State and explain the Newton's laws of motion with suitable examples	5M	CO1	BL-!			
	b)	Show that Newton's second law is invariant	5M	CO1	BL-!			
		OR						
3		Derive the necessary equations for transformation of scalars and vectors under rotation	10M	CO1	BL-!			
4	a)	Give analogy between electrical and mechanical simple harmonic oscillators	5M	CO2	BL-			
	b)	Explain the energy decay in a damped harmonic oscillator	5M	CO2	BL-			
OR								
5		Discuss in detail the complex notation and phasor representation of Simple harmonic motion and physical quantities.	10M	CO2	BL-			

6	a)	State and explain Sabine's formula for reverberation time.	5M	C03	BL-5
	b)	Define absorption coefficient of a material and describe a method for its determination.	5M	CO3	BL-5
		OR			
7		Explain various factors affecting architectural acoustics and their remedies.	10M	CO3	BL-5
8	a)	Describe the Young's double slit experiment.	5M	C04	BL-€
	b)	Discuss in detail the phenomenon of interference by division of amplitude.	5M	CO4	BL-€
		OR			
9		Discuss in detail Fraunhofer diffraction due to a single slit and Obtain the condition for principal maximum and minimum.	10M	C04	BL-€
10	a)	Explain with neat diagram, the process of absorption of light, spontaneous emission and stimulated emission of light	5M	CO5	BL-2
	b)	Explain the construction and working principle of Ruby laser with the help of neat diagrams.	5M	CO5	BL-2
		OR			
11		What is meant by acceptance angle? Derive an expression for acceptance angle of an optical fibre.	10M	C05	BL-5

---00000---