

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

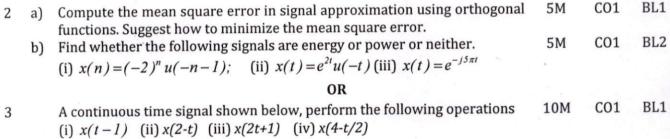
(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

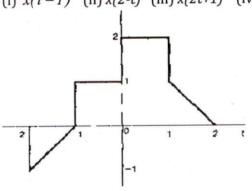
II B.Tech I Sem Supplementary Examination, July-2022 Signals and Systems

(ECE)

Max. Marks: 70

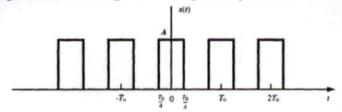
Note: 1. Question paper consists: Part-A and Part-B.


- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.


PART- A

		FARI-A			
		(10*2 Mar	rks =	20 Mar	rks)
1.	a)	Show that the sinusoidal signals with fundamental and harmonic frequencies are orthogonal to each other.	2M	CO1	BL1
	b)	Evaluate the following integrals. $\int_{-1}^{1} (4t^2 + 2t) \delta(t-2) dt$	2M	CO1	BL2
	c)	Give the relation between trigonometric and exponential Fourier series coefficients.	2M	CO2	BL1
	d)	Find the Fourier transform of unit step function.	2M	CO2	BL2
	e)	Give the conditions for distortion less transmission.	2M	CO3	BL1
	f)	Define convolution and correlation. Give the relationship between convolution and correlation.	2M	CO3	BL2
	g)	List the properties of region of convergence of a Laplace transform.	2M	CO4	BL2
	h)	Find the ZT of following discrete time sequence. $x(n) = \{1, 1, 1, 1, 1\}$.	2M	CO4.	BL1
	i)	Fin the Nyquist sampling rate of the following analog signal. $x(t) = cos(100\pi t).sin(200\pi t)$	2M	CO5	BL3
	j)	Give the statement of Perceval's energy and power theorem.	2M	CO5	BL2

PART-B


(10*5 Marks = 50 Marks)

- Evaluate the Fourier transform of the following signals. BL2 5M CO2 (i) $x(t) = e^{-at} \cos(\omega_0 t) u(t)$
 - b) State and prove the time convolution property of Fourier transform. 5M C₀2 BL1

Obtain the exponential Fourier series coefficients of the following periodic 10M CO2 BL2 5 signal. Draw its magnitude and phase spectrum.

- BL₂ What is an LTI system? Explain its properties. Derive an expression for the 5_M CO3 transfer function of an LTI system.
 - With necessary mathematical equations describe the terms signal bandwidth and system bandwidth.

OR

5M

CO3

CO5

BL3

BL1

- Compute the convolution between the following two signals using 10M CO3 BL3 7 graphical method. x(t) = u(t) - u(t-4) h(t) = u(t) - u(t-5)
- Find the Laplace transform of the following signal, sketch the pole zero 5M CO4 BL₂ 8 plot with ROC of the following signals.

 $x_1(t) = e^{-4t} u(t) + e^{-3t} u(t)$

Calculate the inverse Laplace transform of the following signal. 5M CO4 BL1 (i) $X(s) = \frac{s^2 + 2s + 5}{(s+3)(s+5)^2}$; with ROC Re(s) > -3

10M C₀₄ BL₂ 9 Find the inverse Z-Transform of the following. $X(z) = \frac{z}{2z^2 - 3z + 1}$; case (i) |z| > 1 (ii) $|z| < \frac{1}{2}$ using partial fraction

method.

- List the properties of auto correlation function. Show that the Fourier 5M CO5 BL₂ transform of autocorrelation function is energy density spectrum for the case of energy signal.
 - Find the cross correlation between the following signals 5M $x_1(t) = e^{-4t} u(t) \quad x_2(t) = e^{-5t} u(t)$

BL1 State and prove sampling theorem for low pass signals. With necessary 10M CO5 11 equations and waveforms show how the analog signal reconstructed back from the sampled signal.