

DEPARTMENT MECHANICAL ENGINEERING

PYTHON PROGRAMING

LAB MANUAL

MARRI LAXAMAN REDDY

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

SUBJECT NAME Python Programming Lab

SUBJECT CODE 2030575

COURSE-BRANCH B. Tech - Mechanical Engineering

YEAR-SEMESTER II - I

ACADEMIC YEAR 2021-2022

REGULATION MLRS-R20

MISSION AND VISION OF THE INSTITUTE:

Our Vision:

To establish as an ideal academic institution in the service of the nation the world and the humanity

by graduating talented engineers to be ethically strong globally competent by conducting high

quality research, developing breakthrough technologies and disseminating and preserving

technical knowledge.

Our Mission:

To fulfill the promised vision through the following strategic characteristics and aspirations:

 Contemporary and rigorous educational experiences that develop the engineers and

managers;

 An atmosphere that facilitates personal commitment to the educational success of students

in an environment that values diversity and community;

 Prudent and accountable resource management;

 Undergraduate programs that integrate global awareness, communication skills and team

building across the curriculum;

 Leadership and service to meet society’s needs;

 Education and research partnerships with colleges, universities, and industries to graduate

education and training that prepares students for interdisciplinary engineering research and

advanced problem solving;

 Highly successful alumni who contribute to the profession in the global society.

Vision and Mission statements of the Department of Mechanical Engineering:

Vision Statement:

“The Mechanical Engineering Department strives immense success in the field of education,

research and development by nurturing the budding minds of young engineers inventing sets of

new designs and new products which may be envisaged as the modalities to bring about a green

future for humanity”

Mission Statement:

1. Equipping the students with manifold technical knowledge to make them efficient and

independent thinkers and designers in national and international arena.

2. Encouraging students and faculties to be creative and to develop analytical abilities and

efficiency in applying theories into practice, to develop and disseminate new knowledge.

3. Pursuing collaborative work in research and development organizations, industrial

enterprises, Research and academic institutions of national and international, to introduce

new knowledge and methods in engineering teaching and research in order to orient young

minds towards industrial development.

PROGRAM EDUCATIONAL OBJECTIVE

 PEO 1: Graduates shall have knowledge and skills to succeed as Mechanical engineer’s for

their career development.

PEO 2: Graduates will explore in research.

PEO 3: Mechanical Graduates shall have the ability to design products with various

interdisciplinary skills

PEO 4: Graduates will serve the society with their professional skills

PROGRAM OUTCOMES

A. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals and an engineering specialization for the solution of complex engineering

problems.

B. Problem Analysis: Identify, formulate, research, review the available literature and analyze

complex engineering problems reaching substantiated conclusions using first principles of

mathematics, natural science and engineering sciences.

C. Design and development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specific needs with appropriate

considerations for public health safety and cultural, societal and environmental

considerations.

D. Conduct investigations of complex problems: Use research based knowledge and research

methods including design of experiments, analysis and interpretation of data and synthesis

of the information to provide valid conclusions.

E. Modern tool usage: Create, select and apply appropriate techniques, resources and modern

engineering and IT tools including predictions and modeling to complex engineering

activities with an understanding of the limitations.

F. The Engineer and society: Apply reasoning, informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practices.

G. Environment and sustainability: Understand the impact of the professional engineering

solutions in society and environmental context and demonstrate the knowledge of and need

for sustainable development.

H. Ethics: Apply ethical principles and commitment to professional ethics, responsibilities

and norms of the engineering practice.

I. Individual and team work: Function effectively as an individual and as a member or leader

in diverse teams and in multi-disciplinary settings.

J. Communication: Communicate effectively on complex engineering activities with the

engineering community and with the society at large, such as being able to comprehend,

write effective reports, design documentation, make effective presentations, give and

receive clear instructions.

K. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

L. Life – long learning: Recognize the need and have the preparation, ability to engage in

independent and life – long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES:

PS01: Students acquire necessary technical skills in mechanical engineering that make them

employable graduate.

PSO2: An ability to impart technological inputs towards development of society by becoming an

entrepreneur.

COURSE OBJECTIVES:

1. To understand the basic principles of fluid mechanics.

2. To identify various types of flows.

3. To understand boundary layer concepts and flow through pipes.

4. To evaluate the performance of hydraulic turbines.

5. To understand the functioning and characteristic curves of pumps.

COURSE OUTCOMES:

ME 272.1 To analyze and solve electrical circuits using network laws and theorems.

ME 272.2 To understand and analyze basic Electric and Magnetic circuits.

ME 272.3 To study the working principles of Electrical Machines.

ME 272.4 To introduce components of Low Voltage Electrical Installations.

ME 272.5 To identify and characterize diodes.

ME 272.6 To identify and characterize various types of transistors.

INSTRUCTIONS TO THE STUDENTS

1. Every student should obtain a copy of the laboratory manual

2. It is important that all students arrive at each session on time.

3. Dress code: Students must come to the laboratory wearing:

 Trousers.

 half-sleeve tops.

 Leather shoes.

 Half pants, loosely hanging garments and slippers are not allowed.

4. Students should come with thorough preparation for the experiment to be conducted.

5. Students will not be permitted to attend the laboratory unless they bring the practical

record fully completed in all respects pertaining to the experiment conducted in the

previous class.

6. Experiment should be started only after the staff-in-charge has checked the experimental

setup.

7. All the calculations should be made in the observation book. Specimen calculations for one

set of readings have to be shown in the practical record.

8. Wherever graphs are to be drawn, A-4 size graphs only should be used and the same should

be firmly attached to the practical record.

9. Practical record and observation should be neatly maintained.

10. They should obtain the signature of the staff-in-charge in the observation book after

completing each experiment.

11. Theory regarding each experiment should be written in the practical record before

procedure in your own words.

LABORATORY SAFETY PRECAUTIONS

1. Laboratory uniform, shoes & safety glasses are compulsory in the lab.

2. Do not touch anything with which you are not completely familiar. Carelessness may not

only break the valuable equipment in the lab but may also cause serious injury to you and

others in the lab.

3. Please follow instructions precisely as instructed by your supervisor. Do not start the

experiment unless your setup is verified & approved by your supervisor.

4. Do not leave the experiments unattended while in progress.

5. Do not crowd around the equipment’s & run inside the laboratory.

6. During experiments material may fail and disperse, please wear safety glasses and maintain

a safe distance from the experiment.

7. If any part of the equipment fails while being used, report it immediately to your supervisor.

Never try to fix the problem yourself because you could further damage the equipment and

harm yourself and others in the lab.

8. Keep the work area clear of all materials except those needed for your work and cleanup

after your work.

LIST OF EXPERIMENTS/DEMONSTRATIONS:

PART A: ELECTRICAL

1. Verification of KVL and KCL

2. (i) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a

Single-Phase Transformer

 (ii) Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta,

Delta- star, Star-Star) in a Three Phase Transformer

3. Measurement of Active and Reactive Power in a balanced Three-phase circuit

4. Performance Characteristics of a Separately Excited DC Shunt Motor

5. Performance Characteristics of a Three-phase Induction Motor

6. No-Load Characteristics of a Three-phase Alternator

PART B: ELECTRONICS

1. Study and operation of

(i) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv)CRO.

2. PN Junction diode characteristics

3. Zener diode characteristics and Zener as voltage Regulator

4. Input & Output characteristics of Transistor in CB / CE configuration

5. Full Wave Rectifier with & without filters

6. Input and Output characteristics of FET in CSconfiguration

CONTENTS
Sl. No. EXPERIMENT NAME PAGE No.

1
.

 PYTHON NUMBERS 1-7

2
.

CONTROL FLOWS
8-16

3
.

CONTROL FLOWS – CONTINUED
17-22

4
.

PYTHON SEQUENCES 23-28

5
.

PYTHON SEQUENCES
29-33

6
.

PYTHON SEQUENCES
34-37

7
.

FILES
38-42

8
.

FILES 42-50

9
.

CONTINUED 51-56

.10 FUNCTIONS 57-64

11. GUI, GRAHICS.
64-76

17

Exercise – 1 Python Numbers

1. Write a programme to determine whether the given year is leap year, using the
following formula: a leap year is one that is divisible by four, but not by one
hundred, unless it is also divisible by four hundred. For example, 1992, 1996 and
2000 are leap years, but 1967 and 1900 are not. The next leap year falling on a
century is 2400

Solution:

AIM:

To determine whether the given year is leap year or not

ALOGORITHM:

START
Step 1 → Take integer variable year
Step 2 → Assign value to the variable
Step 3 → Check if year is divisible by 4 but not 100, DISPLAY "leap year"
Step 4 → Check if year is divisible by 400, DISPLAY "leap year"
Step 5 → Otherwise, DISPLAY "not leap year"
STOP

FLOW CHART:

18

SOURCE CODE:

n=int(input('enter any year:'))

if (n%4) ==0:

 print('the year is a leap year')

else:

 print('the year is not a leap year')

OUTPUT:

enter any year:1989

the year is not a leap year

(or)

SOURCE CODE:

Year=int(input("Enter Year: "))

if((Year % 400 == 0) or

 (Year % 100!= 0) and

 (Year % 4 == 0)):

 print("Given Year is a leap Year");

 # else it is not a leap year

else:

 print ("Given Year is not a leap Year")

OUTPUT:

enter any year: 1989

the year is not a leap year

19

2. Write a program to determine the greatest common divisor and least common
multiple of a pair of integers

AIM:

To determine the greatest common divisor and least common multiple of a pair of integers

ALGORITHM:

START
Step 1 → Take integer variable number
Step 2 → Assign value to the variable number
Step 3 → Check if the number is gcd or lcm not
Step 4 → Check the number is having same pair of gcd and lcm or not
Stop

FLOW CHART:

SOURCE CODE:

20

num1=int(input('enter any value:'))

num2=int(input('enter any value:'))

a=num1

b=num2

lcm=0

while(num2!=0):

 temp=num2

 num2=num1%num2

 num1=temp

 gcd=num1

 lcm=((a*b)/gcd)

print("\n gcd or hcf of",a,"and",b"=",gcd)

print("\n lcm of",a,"and",b"=",lcm)
OUTPUT:

enter any value:48

enter any value:4

gcd or hcf of 48 and b'=' 4

 lcm of 48 and b'=' 48.0

21

3. Create a calculator application. Write a code that will take two numbers and
operator in the format. N1 OP N2, where N1 and N2 are floating point or integer
values, and OP is one of the following: +, -, *, /, %, **, representing addition,
subtraction, multiplication, division, modulus / remainder, and exponential,
respectively, and displays the result of carrying out that operation of the input
operands.
Hint: You may use the string split () method, but you cannot use the exal () built – in
function

AIM:

To write a python program code of a calculator application that will take two numbers and
operator in the format.

ALGORITHM:

Step 1:Get input from the user (choice corresponding to various operations like addition,

subtraction, multiplication, division)

Step 2:Get two integer inputs from the user.

Step 3:Perform the operations based on the user's choice.

Step 4:Print the output

Step 5:End the program

22

FLOW CHART:

SOURCE CODE:

A=int(input('Enter your first number:'))

operator=input('which operation would you like to perform?(+, -, *, /,//,**):');

B=int(input('Enter your second number:'))

#Addition

if operator=="+":

 ans=A+B

 print(str(ans))

#Subtraction

elif operator=="-":

 ans=A-B

 print(str(ans))

#Division

elif operator=="/":

 ans=A/B

 print(str(ans))

#Multiplication

23

elif operator=="*":

 ans=A*B

 print(str(ans))

#Interdivision

elif operator=="//":

 ans=A//B

 print(str(ans))

#Exponent

elif operator=="**":

 ans=A**B

 print(str(ans))

else:

 print('wrong answer')

OUTPUT:

Enter your first number:5

which operation would you like to perform?(+, -, *, /,//,**):/

Enter your second number:4

1.25

24

Exercise -2 Control Flows

1. Write a programme for checking whether the given number is prime or not?
AIM:

To write a python programme for checking whether the given number is prime or not

ALGORITHM:

Step1: Start

Step2: [Accept a number] read n

Step3: Set i=2

Step4: Repeat steps 5 and 6 until i<n

Step5: [Check whether n is divisible or not]
 if n%i==0 then
 Go to step 7
 Else
 Go to step 6

Step6: Set i = i+1

Step7: if i == n then

print “number is prime”

 Else
print “number is not prime”

Step8: Stop

25

FLOWCHART:

SOURCE CODE:

number = int(input("Enter any number: "))

if number > 1:

 for i in range(2, number):

 if (number % i) == 0:

 print(number, "is not a prime number")

 break

 else:

 print(number, "is a prime number")

else:

26

 print(number, "is not a prime number")

OUTPUT:

Enter any number: 58

58 is not a prime number

27

2. Write a program to print Fibonacci series up to given n values?
AIM:

To write a program to print Fibonacci series up to given n values

ALGORITHM:

Step 1: Start
Step 2: Declare variable a, b, c, n, i
Step 3: Initialize variable a=0, b=1 and i=2
Step 4: Read n from user
Step 5: Print a and b
Step 6: Repeat until i<=n :
 Step 6.1: c=a+b
 Step 6.2: print c
 Step 6.3: a=b, b=c
 Step 6.4: i=i+1
Step 7: Stop

28

FLOWCHART:

SOURCE CODE:

n=int(input("enter the number of terms needed in fibonacci series:"))

f1,f2=0,1

if n == 1:

 print(f1)

elif n==2:

 print(f1,'',f2)

else:

29

 print(f1,f2,end='')

 for i in range(3,n+1):

 f3=f1+f2

 print(f3,end='')

 f1=f2

 f2=f3

OUTPUT:

enter the number of terms needed in fibonacci series:4

0, 1, 1, 2

30

3. Write a program to calculate factorial of given integer number?
AIM:

To write a program to calculate factorial of given integer number

ALGORITHM:

Step1: Start

Step2: Read number N

Step3: FACT = 1 CTRL = 1

Step4: While (CTRL<=N)
Do
 Fact = Fact * i
 CTRL = CTRL + 1

Done

Step5: Display Fact

Step6: Stop

31

FLOWCHART:

SOURCE CODE:

num=int(input('enter a number:'))

factorial = 1

if num<0:

 print('Factorial does not exist for negative numbers')

elif num == 0:

 print('The factorial of 0 is 1')

32

else:

 for i in range(1,num+1):

 factorial=factorial*i

 print('The factorial of',num,'is',factorial)

OUTPUT:

enter a number:25

The factorial of 25 is 15511210043330985984000000

33

Exercise -3 Control Flows – Continued

1. Write a program to calculate value of the following series 1 – x + x2 – x3 + x4 -
…..+xn

AIM:

To write a python program to cx2alculate value of the following series 1 – x + x2 – x3 + x4 -
…+xn

ALGORITHM:

Step1: Start
Step2: Input value of N,X
Step3: I = 1, Sum = 1, Term = 1
Step4: If (I>N) then
Go to Step 9
ENDIF
Step5: Term = -Term * X
Step6: Sum = Sum + Term
Step7: I = I + 1
Step8: Go to Step – 4
Step9: Display value of Sum
Step10: Stop

34

FLOW CHART:

SOURCE CODE:

x=float(input('enter base number:'))

n=int(input('enter the power:'))

sum=1

35

for a in range(1,n+1):

 sum=sum+((-1)**a)*(x**a)

print('sum of the series is',sum)

OUTPUT:

enter base number:5

enter the power:4

sum of the series is 521.0

36

2. Write a program to print pascal triangle
AIM:

To write a python program to print pascal triangle

ALGORITHM:

Step1: Start
Step2: Declare variables i,j,k
Step3: Enter the limits
Step4: Take a number of rows to be printed, let’s assume it to be n
Step5: Make outer iteration i from 0 to n times to print the rows.
Step6: Make inner iteration for j from 0 to (N – 1).
Step7: Print single blank space ” “.
Step8: Close inner loop (j loop) //its needed for left spacing.
Step9: Make inner iteration for j from 0 to i.
Step10: Print nCr of i and j.
Step11: Close inner loop.
Step12: Print newline character (\n) after each inner iteration.
Step13: Stop

37

FLOW CHART:

38

SOURCE CODE:

rows=int(input("Enter the number of rows:"))

for i in range(0,rows):

 coff=1

 for j in range(1,rows-i):

 print(" ",end="")

 for k in range(0,i+1):

 print(" ",coff,end="")

 coff=int(coff*(i-k)/(k+1))

 print()

OUTPUT:

Enter the number of rows:8

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

 1 6 15 20 15 6 1

 1 7 21 35 35 21 7 1

39

Exercise -4 Python Sequences

1. Write a program to sort the numbers in ascending order and strings in reverse
alphabetical orders

AIM:

To write a python program to sort the numbers in ascending order and strings in reverse
alphabetical orders

ALGORITHM:

Step1: Start
Step 2: Enter the array size and read as n.
Step 3: Enter the array elements and read as [i].
Step 4: Print the array elements before sorting.
Step5: After sorting, print the statement array elements.
Step6: Take 2 nested loops, take i variable in 1 loop, and j variable in 1 loop.
Step7: Check condition i> n in the I loop.
Step8: If the condition is false, go to the j loop. Go to the other end.
Step9: In j loop, check condition [j]> [a + j + 1].
Step10: If the condition is true, swap one [j] and one [j + 1]. Otherwise, go to the end.
Step11: Print the array elements [i].
Step 12: End

FLOW CHART:

40

SOURCE CODE:

val=eval(input('enter a list:'))

val.sort()

print('sorted in ascending order:',val)

val.sort(reverse=True)

print('sorted in descending order:',val)

OUTPUT:

enter a list:[8,9,2,63,79,95,54]

sorted in ascending order: [2, 8, 9, 54, 63, 79, 95]

sorted in descending order: [95, 79, 63, 54, 9, 8, 2]

2. Given an integer value, return a string with the equivalent English text of each digit.
For example, an input of 89 results in “eight – nine” being returned. Write a
program to implement it

41

AIM:

To write a python program for an integer value, return a string with the equivalent English text of
each digit.

ALGORITHM:

Step1: Start
Step2: Give the operands in the integer format
Step3: Enter the values either in Thousands or Hundreds or tens whatever you want
Step4: Select the values
Step5: The values you have to convert it into the string with the equivalent English text of each
digit.
Step6:Print the values in the string format
Step7:Stop

FLOW CHART:

42

SOURCE CODE:

43

number=["","One","Two","Three","Four","Five","Six","Seven","Eight","Nine"]

nty=["","","Twenty","Thirty","Fourty","Fifty","Sixty","Seventy","Eighty","Ninty"]

tens=["Ten","Eleven","Twelve","Thirteen","Fourteen","Fifteen","Sixteen","Seventeen","Eightee
n","Nineteen"]

n=int(input("Enter any number:"))

if n>99999:

 print("cant solve for more than 5 digits")

else:

 d=[0,0,0,0,0]

 i=0

 while n>0:

 d[i]=n%10

 i+=1

 n=n//10

 num=""

 if d[4]!=0:

 if(d[4]==1):

 num+=tens[d[3]]+"Thousand"

 else:

 num+=nty[d[4]]+""+number[d[3]]+"Thousand"

 else:

 if d[3]!=0:

 num+=number[d[3]]+"Thousand"

 if d[2]!=0:

 num+=number[d[2]]+"Hundred"

 if d[1]!=0:

 if(d[1]==1):

 num+=tens[d[0]]

 else:

44

 num+=nty[d[1]]+""+number[d[0]]

 else:

 if[d[0]]!=0:

 num+=number[d[0]]

 print(num)

OUTPUT:

Enter any number:89

Eighty-Nine

Exercise -5 Python Sequences

45

1. Write a python program to create a function that will return another string similar
to the input string, but with its case inverted. For example, input of “Mr.Ed” will
result in “mR.eD” as the output string

AIM:

To write a python program to create a function that will return another string similar to the input
string, but with its case inverted.

ALGORITHM:

Step1:Start
Step2:Give the operands either string or integers
Step3:Select the operands either upper case, lower case, swap case, title
Step4:Stop

FLOW CHART:

SOURCE CODE:

str1=input('enter the string:')

print("1.upper 2.lower 3.swapcase 4.title")

n=int(input('select the operation:'))

if n==1:

46

 print(str1.upper())

elif n==2:

 print(str1.lower())

elif n==3:

 print(str1.swapcase())

elif n==4:

 print(str1.title())

else:

 print('select the correct option')

OUTPUT:

enter the string:Mr.Ed

1.upper 2.lower 3.swapcase 4.title

select the operation:3

MR.ED

2. Write a program to take a string and append a backward copy of that string,
making a palindrome

47

AIM:

To write a python program to take a string and append a backward copy of that string making a
palindrome.

ALGORITHM:

Step 1: Start
Step 2: Read the string from the user
Step 3: Calculate the length of the string
Step 4: Initialize rev = “ ” [empty string]
Step 5: Initialize i = length - 1
Step 6: Repeat until i>=0:

6.1: rev = rev + Character at position 'i' of the string
6.2: i = i – 1

Step 7: Print rev
Step 8: Stop

FLOW CHART:

48

SOURCE CODE:

49

number=int(input('enter the string:'))

string=str(number)

rev_string=string[::-1]

print('reversed string:',rev_string)

if string==rev_string:

 print('string is a palindrome')

else:

 print('string is not a palindrome')

OUTPUT:

enter the string:1231

reversed string: 1321

string is not a palindrome

(or)

enter the string:1331

reversed string: 1331

string is a palindrome

Exercise -6 Python Sequences

50

1. Write a program to create dictionary and display its key alphabetically
AIM:

To write a python program to create dictionary and display its keys alphabetically

ALGORITHM:

Step1: Start
Step2: Create the dictionary values
Step3: Sorted the values of the dictionary items
Step4: Sorted the values
Step5: Stop

FLOW CHART:

51

SOURCE CODE:

d = {2: 3, 1: 89, 4: 5, 3: 0}

od = sorted(d.items())

print(od)

OUTPUT:

[(1, 89), (2, 3), (3, 0), (4, 5)]

2. Write a program to take a dictionary as input and return one as output, but the
values are the keys and vice versa

AIM:

52

To write a program to take a dictionary as input and return one as output, but the values are the
keys and vice versa.

ALGORITHM:

Step1: Start
Step2: Create the dictionary values
Step3: Sorted the values of the dictionary items
Step4: Return the dictionary values as input and return the value as one input vice versa
Step5: Stop

FLOW CHART:

SOURCE CODE:

n=int(input("Input a number:"))

d=dict()

for x in range(1,n+1):

 d[x]=x*x

print(d)

OUTPUT:

Input a number:25

53

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81, 10: 100, 11: 121, 12: 144, 13: 169, 14:
196, 15: 225, 16: 256, 17: 289, 18: 324, 19: 361, 20: 400, 21: 441, 22: 484, 23: 529, 24: 576, 25:
625}

Exercise 7 – Files

54

1. Write a program to compare two text files. If they are different, give the line and
column numbers in the files where the first difference occurs

AIM:

To Write a Python program to compare two text files. If they are different, give the line and
column numbers in the files where the first difference occurs.

ALGORITHM:

Step1: Start
Step2: Take the text file and write whatever user wants the data
Step3: User is required to open the file
Step4: Compare the data from one file to another file.
Step5: Print the data step by step
Step6: Print the same data as the user wants
Step7: Stop

FLOW CHART:

55

SOURCE CODE:

f1=open("file1.txt","r")

f2=open("file2.txt","r")

for line1 in f1:

 for line2 in f2:

 if line1==line2:

 print("SAME\n")

56

 else:

 print(line1+line2)

 break

f1.close()

f2.close()

My file1.txt

1. for
2. foo
3. in
4. bar
5. print
6. foo

My file2.txt

1. while
2. foo
3. <
4. bar
5. print
6. foo

OUTPUT:

1. for
2. while
3.
4. SAME
5.
6. in
7. <
8.
9. SAME
10.
11. SAME
12.
13. SAME

2. Write a program to compute the number of characters, words and lines in a file

57

AIM:

To write a Python program that to compute the number of characters, words and lines in a file.

ALGORITHM:

Step1: Start
Step2: Open the text file and write the file whatever the user wants
Step3: Check whatever the lines, words, characters are to be count
Step4: Print the numbers of lines, words, characters that the user has to be given as input
Step5: Stop

FLOW CHART:

SOURCE CODE:

file = open("sample.txt", "r")

number_of_lines = 0

number_of_words = 0

number_of_characters = 0

for line in file:

58

 line = line.strip("\n")

won't count \n as character

 words = line.split()

 number_of_lines += 1

 number_of_words += len(words)

 number_of_characters += len(line)

file.close()

print("lines:", number_of_lines, "words:", number_of_words, "characters:",
number_of_characters)

OUTPUT:

lines: 3 words: 5 characters: 29

Exercise -8 Files

59

1. Write a function ball collide that takes two balls as parameters and computes if they
are colliding. Your function should return a Boolean representing whether or not
the balls are colliding.

Hint: Represent a ball on a plane tuple of (x,y,r), r being the radius

If (distance between two balls centres) <= (sum of radii) then (they are colliding)

AIM:

To Write a Python function ball collide that takes two balls as parameters and computes if they
are colliding. Your function should return a Boolean representing whether or not the balls are
colliding.

ALGORITHM:

Step1: Start
Step2: Import math module
Step3: Read the values of x1,y1,r1,x2, y2and r2
Step4: Calculate the distance using the formulae math.sqrt((x2 - x1)**2 + (y2 - y1)**2) and
store the result in distance
Step5: Print distance
Step6: Stop.

FLOW CHART:

60

SOURCE CODE:

import math

def ball_collide(x1,y1,r1,x2,y2,r2):

 dist=math.sqrt((x2-x1)**2+(y2-y1)**2);

 print("Distance b/w two balls:",dist)

 center=dist/2;

 print("Collisison point", center);

61

 r=r1+r2;

 print("Sum of radius",r)

 if(center<=r):

 print("They are Colliding")

 return True;

 else:

 print("Not Colliding")

 return False;

c= ball_collide(4,4,3,2,2,3)

print(c)

c= ball_collide(100,200,20,200,100,10)

print(c)

OUTPUT:

Distance b/w two balls: 2.8284271247461903

Collisison point 1.4142135623730951

Sum of radius 6

They are Colliding

True

Distance b/w two balls: 141.4213562373095

Collisison point 70.71067811865476

Sum of radius 30

Not Colliding

False

2. Find mean, median, mode for the given set of numbers in a list
AIM:

62

To write a Python program that to find mean, median, mode for the given set of numbers in a list.

ALGORITHM:

Step1: Start
Step2: Given the list of numbers as the user wants
Step3:Print Mean, Median and Mode
Step4:Stop

FLOW CHART:

SOURCE CODE:

from statistics import mean, median, mode

i=[15,18,2,36,12,78,5,6,9,18]

print("Mean",mean(i))

print("Median",median(i))

63

print("Mode",mode(i))

OUTPUT:

Mean 19.9

Median 13.5

Mode 18

64

3. Write a simple functions max2() and min2() that take two items and return the
larger and smaller item, respectively. They should work arbitrary Python objects.
For example max2(4,8) and min2(4,8) would each return 8 and 4 respectively

AIM:

To write a simple Python program functions max2() and min2() that take two items and return
the larger and smaller item, respectively.

ALGORITHM:

Step1:Start
Step2: Give the values the user wants
Step3: Select the max and min values
Step4: Print max and min values
Step5: Stop

FLOW CHART

65

SOURCE CODE:

66

from operator import lt

def max2(num1,num2):

 ele=lt(num1,num2)

 if ele==True:

 return num2

 else:

 return num1

 def min2(num1,num2):

 ele=lt(num1,num2)

 if ele==True:

 return num1

 else:

 return num2

OUTPUT:

4,8

max value:8

min value:4

Exercise -9 Continued

67

1. Write a function nearly equal to test whether two strings are nearly equal. Two
strings a and b are nearly equal when a can be generated by a single mutation on b

AIM:

To write a python function nearly equal to test whether two strings are nearly equal that two
strings a and b are nearly equal when a can be generated by a single mutation on b

ALGORITHM:

Step1: Start
Step2: To compare two strings
Step3: To compare two strings with form values enter by user
Step4: To compare two strings with the database.
Step5: Stop

FLOW CHART:

SOURCE CODE:

def nearly_equal(str1,str2):

 count=0

 i=j=0

 while(i<len(str1) and j<len(str2)):

 if(str1[i]!=str2[j]):

 count=count+1

 if(len(str1)>len(str2)):

 i=i+1

 elif(len(str1)==len(str2)):

68

 pass

 else:

 i=i-1

 if(count>1):

 return False

 i=i+1

 j=j+1

 if(count<2):

 return True

str1=input("Enter first string::\n")

str2=input("Enter second string::\n")

boolean=nearly_equal(str1,str2)

if(boolean):

 print("Strings are nearly equal.")

else:

 print("Strings are not equal.")

OUTPUT:

Enter first string::

RISE

Enter second string::

RISEE

Strings are nearly equal.

2. Write a function to find dups to find all the duplicates in the list
AIM:

69

To write a python function to find dups to find all the duplicates in the list

ALGORITHM:

Step1: Start
Step2: Enter the Integers whatever the user wants
Step3: Enter the Duplicate elements for the list
Step4: Select the dups in the duplicate elements
Step5: To find the duplicate elements in the list
Step6: Print the dups in the duplicate elements
Step7: Stop

FLOW CHART:

SOURCE CODE:

def dups(numlist):

 duplicates={}

 for ele in numlist:

 c=numlist.count(ele)

 if(c>=2):

 duplicates[ele]=c

70

 print("Duplicate elements are:\n",duplicates)

 return

numlist=[]

n=int(input("Enter number of elements to be insert:\n"))

for i in range(n):

 ele=int(input("Enter element"))

 numlist.append(ele)

dups(numlist)

OUTPUT:

Enter number of elements to be insert:

5

Enter element2

Enter element4

Enter element2

Enter element3

Enter element3

Duplicate elements are:

 {2: 2, 3: 2}

3. Write a function unique to find all the unique elements in a list
AIM:

To write a python function unique to find all the unique elements in a list

ALGORITHM:

71

Step1: Start
Step2: Enter the unique elements in the list
Step3: Define unique elements in the list
Step4: Append the unique elements in the list
Step5: Print the unique elements in the list
Step6:Stop

FLOW CHART:

SOURCE CODE:

def unique(numlist):

 uniqueele=[]

 for ele in numlist:

 c=numlist.count(ele)

 if(c==1):

 uniqueele.append(ele)

 print("Unique elements are:\n",uniqueele)

 return

numlist=[]

72

n=int(input("Enter number of elements to be insert:\n"))

for i in range(n):

 ele=int(input("Enter element"))

 numlist.append(ele)

unique(numlist)

OUTPUT:

Enter number of elements to be insert:

5

Enter element2

Enter element3

Enter element4

Enter element3

Enter element5

Unique elements are:

 [2, 4, 5]

Exercise -10 Functions – Problem Solving

1. Write a function to cumulative_product to compute cumulative product of a list of
numbers

AIM:

73

To write a python function to cumulative_product to compute cumulative product of a list of
numbers.

ALGORITH:

Step1: Start
Step2: Enter the elements whatever the user wants
Step3: Cumulative product of an elements
Step4: Append the elements
Step5: Print the cumulative_product of the elements
Step6: Stop

FLOW CHART:

SOURCE CODE:

def cumulative_product(numlist):

 product=1

 cp=[]

 for ele in numlist:

 product=product*ele

 cp.append(product)

 return cp

numlist=[]

n=int(input("Enter number of elements to be insert:"))

for i in range(n):

 ele=int(input("Enter element:"))

74

 numlist.append(ele)

cp=cumulative_product(numlist)

print("Cumulative product of list elements is ",cp)

OUTPUT:

Enter number of elements to be insert:4

Enter element:3

Enter element:2

Enter element:4

Enter element:1

Cumulative product of list elements is [3, 6, 24, 24]

2. Write a function reverse to reverse a list. Without using the reverse function
AIM:

To write a python function that reverse to reverse a list without using the reverse function.

ALGORITHM:

Step 1:Start
Step 2: Read the string from the user

75

Step 3: Calculate the length of the string
Step 4: Initialize rev = “ ” [empty string]
Step 5: Initialize i = length - 1
Step 6:Repeat until i>=0:

6.1: rev = rev + Character at position 'i' of the string
6.2: i = i – 1

Step 7: Print rev
Step 9: Stop

FLOW CHART:

76

SOURCE CODE:

def reverse(numlist):

 i=0

 j=len(numlist)-1

 while(i<=j):

 temp=numlist[i]

 numlist[i]=numlist[j]

77

 numlist[j]=temp

 i=i+1

 j=j-1

 return

numlist=[]

n=int(input("Enter number of elements to be insert:"))

for i in range(n):

 ele=int(input("Enter element:"))

 numlist.append(ele)

reverse(numlist)

print("After reverse list elements are:\n",numlist)

OUTPUT:

Enter number of elements to be insert:4

Enter element:2

Enter element:3

Enter element:1

Enter element:5

After reverse list elements are:

 [5, 1, 3, 2]

78

3. Write function to compute gcd, lcm of two numbers. Each function shouldn’t exceed
one line

AIM:

To write a python function that to compute gcd, lcm of two numbers. Each function shouldn’t
exceed one line.

ALGORITHM:

Step1: Start
Step2: Enter the numbers of GCD elements
Step3: Enter the numbers of LCM elements
Step4: Print GCD of two numbers
Step5: Print LCM of two numbers
Step6: Stop

79

FLOW CHART:

SOURCE CODE:

gcd=lambda a,b: a if b==0 else gcd(b,a%b)

lcm=lambda a,b: (a*b)/gcd(a,b)

num1=int(input("Enter first number:"))

num2=int(input("Enter second number:"))

80

print("LCM of %d and %d is %d"%(num1,num2,lcm(num1,num2)))

print("GCD of %d and %d is %d"%(num1,num2,gcd(num1,num2)))

OUTPUT:

Enter first number:8

Enter second number:24

LCM of 8 and 24 is 24

GCD of 8 and 24 is 8

(or)

SOURCE CODE:

n1 = int(input("Enter First number :"))

n2 = int(input("Enter Second number :"))

x = n1

y = n2

while(n2!=0):

 t = n2

 n2 = n1 % n2

 n1 = t

gcd = n1

print("GCD of {0} and {1} = {2}".format(x,y,gcd))

lcm = (x*y)/gcd

print("LCM of {0} and {1} = {2}".format(x,y,lcm))

OUTPUT:

Enter First number :8

Enter Second number :24

GCD of 8 and 24 = 8

LCM of 8 and 24 = 24.0

Exercise – 11 GUI, Graphics

81

1. Write a GUI for an Expression Calculator usingtk
AIM:

To write a Python program for GUI for an Expression Calculator usingtk

ALGORITHM:

Step1: Start
Step2: Every time application will open on the bottom right side.
Step3:The application will have a grey background in the display & black background in the
buttons.
Step4: The text color of the entire application will be white
Step5: A window will have a fixed size & can’t be resized.
Step6: The calculator will have the basic functionality of addition, subtraction, multiplication &
division.
Step7: Numbers will be displayed on the right side of the screen
Step8:Stop

FLOW CHART:

82

SOURCE CODE:

Python program to create a simple GUI

calculator using Tkinter

import everything from tkinter module

from tkinter import *

globally declare the expression variable

expression = ""

Function to update expression

in the text entry box

def press(num):

point out the global expression variable

global expression

83

concatenation of string

expression = expression + str(num)

update the expression by using set method

equation.set(expression)

Function to evaluate the final expression

def equalpress():

Try and except statement is used

for handling the errors like zero

division error etc.

Put that code inside the try block

which may generate the error

try:

global expression

eval function evaluate the expression

and str function convert the result

into string

total = str(eval(expression))

equation.set(total)

initialize the expression variable

by empty string

expression = ""

if error is generate then handle

by the except block

except:

equation.set(" error ")

expression = ""

Function to clear the contents

84

of text entry box

def clear():

global expression

expression = ""

equation.set("")

Driver code

if __name__ == "__main__":

create a GUI window

gui = Tk()

set the background colour of GUI window

gui.configure(background="light green")

set the title of GUI window

gui.title("Simple Calculator")

set the configuration of GUI window

gui.geometry("270x150")

StringVar() is the variable class

we create an instance of this class

equation = StringVar()

create the text entry box for

showing the expression .

expression_field = Entry(gui, textvariable=equation)

grid method is used for placing

the widgets at respective positions

in table like structure .

expression_field.grid(columnspan=4, ipadx=70)

create a Buttons and place at a particular

location inside the root window .

85

when user press the button, the command or

function affiliated to that button is executed .

button1 = Button(gui, text=' 1 ', fg='black', bg='red',

command=lambda: press(1), height=1, width=7)

button1.grid(row=2, column=0)

button2 = Button(gui, text=' 2 ', fg='black', bg='red',

command=lambda: press(2), height=1, width=7)

button2.grid(row=2, column=1)

button3 = Button(gui, text=' 3 ', fg='black', bg='red',

command=lambda: press(3), height=1, width=7)

button3.grid(row=2, column=2)

button4 = Button(gui, text=' 4 ', fg='black', bg='red',

command=lambda: press(4), height=1, width=7)

button4.grid(row=3, column=0)

button5 = Button(gui, text=' 5 ', fg='black', bg='red',

command=lambda: press(5), height=1, width=7)

button5.grid(row=3, column=1)

button6 = Button(gui, text=' 6 ', fg='black', bg='red',

command=lambda: press(6), height=1, width=7)

button6.grid(row=3, column=2)

button7 = Button(gui, text=' 7 ', fg='black', bg='red',

command=lambda: press(7), height=1, width=7)

button7.grid(row=4, column=0)

button8 = Button(gui, text=' 8 ', fg='black', bg='red',

command=lambda: press(8), height=1, width=7)

button8.grid(row=4, column=1)

button9 = Button(gui, text=' 9 ', fg='black', bg='red',

command=lambda: press(9), height=1, width=7)

86

button9.grid(row=4, column=2)

button0 = Button(gui, text=' 0 ', fg='black', bg='red',

command=lambda: press(0), height=1, width=7)

button0.grid(row=5, column=0)

plus = Button(gui, text=' + ', fg='black', bg='red',

command=lambda: press("+"), height=1, width=7)

plus.grid(row=2, column=3)

minus = Button(gui, text=' - ', fg='black', bg='red',

command=lambda: press("-"), height=1, width=7)

minus.grid(row=3, column=3)

multiply = Button(gui, text=' * ', fg='black', bg='red',

command=lambda: press("*"), height=1, width=7)

multiply.grid(row=4, column=3)

divide = Button(gui, text=' / ', fg='black', bg='red',

command=lambda: press("/"), height=1, width=7)

divide.grid(row=5, column=3)

equal = Button(gui, text=' = ', fg='black', bg='red',

command=equalpress, height=1, width=7)

equal.grid(row=5, column=2)

clear = Button(gui, text='Clear', fg='black', bg='red',

command=clear, height=1, width=7)

clear.grid(row=5, column='1')

Decimal= Button(gui, text='.', fg='black', bg='red',

command=lambda: press('.'), height=1, width=7)

Decimal.grid(row=6, column=0)

start the GUI

gui.mainloop()

Output:

87

2. Write a program to implement the following figures using turtle

88

AIM:

To Write a Python program to implement the following figures using turtle.

ALGORITHM:

Step1: Start
Step2: Making an angle from 0 to 180
Step3: Penup
Step4: Goto (0,0)
Step5: Making an angle
Step6: Forward (100) of an turtle
Step7: Pendown
Ste8: Forward(20) of an turtle
Step9: Stop

FLOW CHART:

SOURSE CODE:

import turtle as tt

tt.bgcolor('black')

89

tt.pensize(2)

tt.speed(10)

for i in range(6):

for color in ('red', 'magenta', 'blue',

'cyan', 'green', 'white',

'yellow'):

tt.color(color)

tt.circle(100)

tt.left(10)

tt.hideturtle()

OUTPUT:

90

Vibrate Circle Source Code:

import turtle

t = turtle.Turtle()

s = turtle.Screen()

s.bgcolor("black")

t.pencolor("red")

a = 0

b = 0

t.speed(0)

t.penup()

91

t.goto(0,200)

t.pendown()

while(True):

 t.forward(a)

 t.right(b)

 a+=3

 b+=1

 if b == 210:

 break

 t.hideturtle()

turtle.done()

92

OUTPUT:

	PYTHON PROGRAMING
	LAB MANUAL

