

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

B.Tech - CSE - Artificial Intelligence & Machine Learning II Year Course Structure And Syllabus(R20) Applicable From 2020-21 Admitted Batch

II YEAR I SEMESTER

S. No.	Course Code	Course Title	Course Area	Hours Per Week			Credits	Scheme of Examination Maximum Marks		
				L	Т	Р		Internal (CIE)	External (SEE)	Total
1	2036601	Discrete Mathematics	PC	3	1	0	4	30	70	100
2	2036602	Operating systems	PC	3	0	0	3	30	70	100
3		Digital Logic Design & computer Organization	PC	3	1	0	4	30	70	100
4	2030004	Probability & Statistics	BS	3	0	0	3	30	70	100
5	2036604	Python Programming	PC	3	0	0	3	30	70	100
6	2036671	Operating systems Lab	PC	0	0	3	1.5	30	70	100
7		IT Workshop & computer Organization Lab	PC	0	0	3	1.5	30	70	100
8	2036673	Python Programming Lab	PC	0	0	3	1.5	30	70	100
9	2030025	Gender Sensitization	MC	2	0	0	0	-	-	-
	Total Credits				2	9	21.5	240	560	800

II YEAR II SEMESTER

S. No.	Course Code	Course Title	Course Area			-	Credits	Scheme of Examination Maximum Marks		
				٦	T	Р		Internal (CIE)	External (SEE)	Total
1	2046605	Artificial Intelligence	PC	2	0	0	2	30	70	100
2		Database Management Systems	PC	3	0	0	3	30	70	100
3		Basic Electrical Engineering	ES	3	0	0	3	30	70	100
4		Design and Analysis of Algorithms	PC	3	0	0	3	30	70	100
5	2046608	JAVA Programming	PC	3	0	0	3	30	70	100
6	2046609	Computer Vision	PC	3	0	0	3	30	70	100
7		Database Management Systems Lab	PC	0	0	3	1.5	30	70	100
8		Basic Electrical Engineering Lab	ES	0	0	2	1	30	70	100
9	2046675	JAVA Programming Lab	PC	0	0	3	1.5	30	70	100
10	2040023	Constitution of India	MC	2	0	0	0	-	-	-
Total Credits				19	0	8	21	270	630	900

II - I

2036601: DISCRETE MATHAMATICS (Common to CSE,IT,CSIT,CSM,CSD,CSC)

B.Tech. II Year I Semester.

LTPC 3 10 4

Course Objectives:

- To introduce the concepts of mathematical logic.
- To introduce the concepts of sets, relations, and functions.
- To perform the operations associated with sets, functions, and relations.
- To introduce generating functions and recurrence relations.
- To use Graph Theory for solving problems.

Course Outcomes

- 1. Ability to apply mathematical logic to solve problems.
- 2. Understand sets, relations, functions, and discrete structures.
- 3. Able to use logical notation to define and reason about fundamental mathematical concepts such as sets, relations, and functions.
- 4. Able to formulate problems and solve recurrence relations.
- 5. Able to model and solve real-world problems using graphs and trees.

UNIT - I

Mathematical logic: propositional logic, Statements and Notation, logical Connectives, logical equivalence, Normal Forms.Quantifiers, Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods and Strategy.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings.

Functions, types of functions, inverse of a function.

UNIT - III

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Binomial Coefficients, The Binomial and Multinomial Theorems, The Principle of Inclusion-Exclusion.

Induction and Recursion

Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms.

UNIT - IV

Recurrence Relations: Generating Functions of Sequences, Calculating Coefficients of generating functions, Recurrence relations, Solving recurrence relations by substitution, The method of Characteristic roots, Solutions of Inhomogeneous Recurrence Relations, Divide-and-Conquer Algorithms.

UNIT - V

Graph Theory: Basic Concepts, Isomorphisms and Subgraphs, Spanning Trees and their Properties, Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers.

TEXT BOOKS:

- **1.** Discrete Mathematical Structures with Applications to Computer Science, J.P. Tremblay, R. Manohar, McGraw Hill education (India) Private Limited. (UNITS I,II)
- **2.** Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott, Abraham Kandel, Theodore P. Baker, Pearson , 2nd ed. (**Units III, IV, V**)

REFERENCE BOOKS:

1. Discrete Mathematics and its Applications, Kenneth H. Rosen, 7th Edition, McGrawHill education (India) Private Limited

2036602-OPERATING SYSTEMS

B.Tech. II Year I Semester.

L T P C 3 0 0 3

Objectives

- 1. Provide an introduction to operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- 2. Introduce the issues to be considered in the design and development of operating system
- 3. Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O inUnix

Outcomes

- 1. Will be able to control access to a computer and the files that may be shared
- 2. Demonstratetheknowledgeofthecomponentsofcomputerandtheirrespectiverolesincomputing.
 - 3. Ability to recognize and resolve user problems with standard operatingenvironments.
- 4. Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use eacheffectively.

UNIT - I

Operating System Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, SystemCalls.

UNIT - II

Process and CPU Scheduling - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads, and Interposes Communication, Scheduling Criteria, Scheduling Algorithms, Multiple - Processor Scheduling.

System call interface for process management-fork, exit, wait, waitpid, exec

UNIT - III

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock. **Process Management and Synchronization** - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors. **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page ReplacementAlgorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, Iseek, stat, ioctl, systemcalls.

TEXT BOOKS

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearsoneducation.

REFERENCES

- 1. Operating Systems Internals and Design Principles, Stallings, 5th Edition, Pearson Education/PHI, 2005.
- 2. Operating System A DesignApproach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum 2ndedition,Pearson/PHI
- 4. Unix programming environment, Kernighan and Pike, PHI. / PearsonEducation
- 5. Unix Internals The New Frontiers, U.Vahalia, PearsonEducation.

2036603-DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION

B.Tech. II Year I Semester.

L T P C 3 1 0 4

Objectives:

- To understand the basic theoretical concepts of digital systems like the binary system and Boolean algebra.
- To express real life problem in logic design terminology.
- To use Boolean algebraic formulations to design digital systems. To design using combinational/sequential circuits
- To understand the Instruction execution stages.
- To explain the functions of the various computer hardware components.

UNIT- I

Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers, Computer Generations. Data Representation: Binary Numbers, Fixed Point Representation. Floating – Point Representation. Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes.

UNIT- II

Digital Logic Circuits - I: Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. Flip-flops, Combinational Circuits.

Digital Logic Circuits - II: Registers, Shift Registers, Binary counters, Decoders, Multiplexers, Programmable Logic Devices.

UNIT-III

Computer Arithmetic: Algorithms for fixed point and floating point addition, subtraction, multiplication and division operations. Hardware Implementation of arithmetic and logic operations, High performance arithmetic.

Instruction Set & Addressing: Memory Locations and Addresses, Machine addresses and sequencing, Various Addressing Modes, Instruction Formats, Basic Machine Instructions. IA-32 Pentium example.

UNIT-IV

Processor Organization: Introduction to CPU, Register Transfers, Execution of Instructions, Multiple Bus Organization, Hardwired Control, Microprogrammed Control Memory Organization: Concept of Memory, RAM, ROM memories, memory hierarchy, cache memories, virtual memory, secondary storage, memory management requirements.

UNIT- V

Input / Output Organization: Introduction to I/O, Interrupts- Hardware, Enabling and disabling Interrupts, Device Control, Direct memory access, buses, interface circuits, standard I/O Interfaces.

TEXT BOOKS:

- 1. Computer Organization Carl Hamacher, ZvonkoVranesic, SafwatZaky, fifth edition, McGraw Hill.
- 2. Computer Architecture and Organization- An Integrated Approach, Miles Murdocca, Vincent Heuring, Second Edition, Wiley India.
- 3. Computer Systems Architecture M.Moris Mano, IIIrd Edition, Pearson.

- 1. Computer Organization and Architecture William Stallings Sixth Edition, Pearson
- 2. Computer- organization and Design- David A. Paterson and John L.Hennessy-Elsevier.
- 3. Fundamentals or Computer Organization and Design, SivaramaDandamudi Springer Int. Edition.
- 4. Digital Design Third Edition, M.Morris Mano, Pearson Education/PHI.
- 5. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

2030004: PROBABILITY AND STATISTICS

L T P C 3 0 0 3

B.Tech. II Year I Semester-

Course Objectives: To learn

- The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.
- The basic ideas of statistics including measures of central tendency.
- The statistical methods of studying data samples.
- The sampling theory and testing of hypothesis and making inferences.

Course Outcomes: After learning the contents of this paper the student must be able to

- Formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.
- Apply discrete and continuous probability distributions.
- Classify the concepts of data science and its importance.
- Infer the statistical inferential methods based on small and large sampling tests.
- Interpret the association of characteristics through correlation and regression tools.

UNIT-I: Probability and Random Variables

Probability: Sample Space, Events, Probability of an Event, Additive Rules, conditional probability, independent events, Product Rule and Bayes' theorem.

Random variables: Discrete and continuous random variables. Expectation, Mean and Variance of random variables. Chebyshev's inequality.

UNIT-II: Probability Distributions & Estimation

Probability distribution-Binomial, Poisson approximation to the binomial distribution, uniform, exponential and Normal distribution. Estimation.: Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT-III: Sampling theory and Small samples

Population and sample, parameters and statistics; sampling distribution of means (¬ known)-central limit theorem, t-distribution, sampling distribution of means (¬ unknown)-sampling distribution of variances-chi-square and F-distributions.

UNIT-IV: Testing of Hypothesis & Stochastic Process:

Testing of Hypothesis: Large sample test for single proportion, difference of proportions, single mean, difference of means.

Stochastic process: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n- step transition probabilities, Markov chain, Steady state condition, Markov analysis.

UNIT-V: Curve Fitting for Statistical Data

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves; Correlation and regression – Rank correlation.

TEXTBOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, keying Ye, Probability and statistics for engineers and scientists, 9th Edition, Pearson Publications.
- 2. Fundamentals of Mathematical Statistics, Khanna Publications, S C Guptas and V.K. Kapoor.

REFERENCES:

- Miller and Freund's, Probability and Statistics for Engineers, 8thEdition, PearsonEducations
 - S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002

2036604-PYTHON PROGRAMMING

(Common to All Branches)

B.Tech. II Year I -Semester

L T P C 3 0 0 3

Course Objectives:

- 1. Handle Strings and Files in Python.
- 2. Understand Lists, Dictionaries and Regular expressions in Python.
- 3. Understand FILES, Multithread programming in Python.

Course Outcomes:

- 1. Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- 2. Demonstrate proficiency in handling Strings and File Systems.
- 3. Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.

UNIT - I

Python Introduction, History & Installing of Python, Python basics, Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions. Control structures

UNIT-II

Related Modules Sequences - Strings, Lists, and Tuples, Mapping and Set Types. Iterators, List comprehensions, Generator Expressions

UNIT-III

FILES: File Objects, File Built-in Functions, File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

UNIT-IV

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, Creating Exceptions, Exceptions and the sys Module, Modules and Files, Namespaces, Importing Modules, Importing Module Attributes,

Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - V

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python

TEXT BOOKS:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

- 2. Think Python, Allen Downey, Green Tea Press
- 3. Introduction to Python, Kenneth A. Lambert, Cengage
- 4. Python Programming: A Modern Approach, VamsiKurama, Pearson
- 5. Learning Python, Mark Lutz, O'Really.

2036671-OPERATING SYSTEMS LAB (Using UNIX/LINUX)

B.Tech. II Year I-Semester

L T P C 0 0 3 1.5

Objectives

- 1. Toprovideanunderstandingofthedesignaspectsofoperatingsystemconceptsthroughsi mulation
- 2. Introduce basic Unix commands, system call interface for process management, inter process communication and I/O in Unix

Outcomes

- 1. Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- 2. Able to implement C programs using Unix system calls

List of Experiments

- 1. Write C programs to simulate the following CPU Scheduling algorithms
 - a) FCFS b)SJF c)Round Robin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms
 - a) Pipes b)FIFOs c)Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques
 - a) Paging b)Segmentation

TEXT BOOKS

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, JohnWiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearsoneducation.

REFERENCES

- 1. Operating Systems Internals and Design Principles Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum 2nd edition, Pearson/PHI
- 4. Unix programming environment, Kernighan and Pike, PHI. / Pearson Education
- 5. Unix Internals The New Frontiers, U.Vahalia, Pearson Education

B.Tech. II Year I-Semester

L T P C 0 0 3 1.5

Objectives:

The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, Power Point and Publisher.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible. Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced. Productivity tools module would enable the students in crafting professional word documents, excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools and LaTeX. (Recommended to use Microsoft office 2007 in place of MS Office 2003)

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given aspart of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with aViva.

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should

demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

- Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.
- **Task 3: Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.
- **Task 4: Cyber Hygiene:** Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an antivirus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/orworms.

LaTeX and Word

- **Task 1 Word Orientation**: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.
- **Task 2: Using LaTeX and Word** to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.
- **Task 3: Creating project** abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- **Task 4: Creating a Newsletter**: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help andresources.

- **Task 1: Creating a Scheduler -** Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
- **Task 2 : Calculating GPA** .Features to be covered:- Cell Referencing, Formulae in excel average, std.deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP
- **Task 3: Performance Analysis** Features to be covered:- Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting.

LaTeX and MS/equivalent (FOSS) tool Power Point

Task1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes: - PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Powerpoint. Students will be given model power point presentation which needs to be replicated (exactly how it'sasked).

- **Task 2:** Second week helps students in making their presentations interactive. Topic covered during this week includes: Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.
- **Task 3:** Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notesetc), and Inserting Background, textures, Design Templates, Hiddenslides.

- 1. Comdex Information Technology course tool kit, Vikas Gupta, WILEYDreamtech
- 2. The Complete Computer upgrade and repair book, 3rd Edition, CherylA Schmidt, WILEY Dreamtech
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. PC Hardware and A+Handbook, Kate J. Chase, PHI(Microsoft)
- 5. LaTeX Companion, Leslie Lamport, PHI/Pearson.
- 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. CISCO Press, Pearson Education. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan CISCO Press, Pearson Education. Microsoft Office 2007: The Missing Manual Chris Grover, Mathew MacDonald, E.A.Vander Veer O'reillyMedia

Implement the following programs using MASAM.

- 1. Write assembly language programs to evaluate the expressions:
 - i) a = b + c d * e ii) z = x * y + w v + u / k a. Considering 8-bit, 16 bit and 32-bit binary numbers as b, c, d, e. b. Considering 2-digit, 4 digit and 8-digit BCD numbers. Take the input in consecutive memory locations and results also Display the results by using "int xx" of 8086. Validate program for the boundary conditions.
- 2. Write an ALP of 8086 to take N numbers as input. And do the following operations on them. a. Arrange in ascending and descending order.
- 3. Find max and minimum a. Find average Considering 8-bit, 16-bit binary numbers and 2-digit, 4 digit and 8-digit BCD numbers. Display the results by using "int xx" of 8086. Validate program for the boundary conditions.
- 4. Write an ALP of 8086 to take a string of as input (in 'C' format) and do the following Operations on it. a. Find the length b. Find it is Palindrome or n
- 5. Find whether given string substring or not. a. Reverse a string b. Concatenate by taking another sting Display the results by using "int xx" of 8086.
- 6. Write the ALP to implement the above operations as procedures and call from the main procedure. 7. Write an ALP of 8086 to find the factorial of a given number as a Procedure and call from the main program which display the result.

TEXT BOOKS:

- 1. Switching theory and logic design –A. Anand Kumar PHI, 2013
- 2. Advanced microprocessor & Pieperar-A. K. Ray and K. M. Bherchandavi, TMH, 2nd edition.

- 1. Switching and Finite Automatic theory-ZviKohavi, Niraj K.Jha Cambridge ,3rd edition
- 2. Digital Design Morris Mano, PHI, 3rd edition
- 3. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition.

2036673-PYTHON PROGRAMMING LAB

(Common to all branches)

B.Tech. II Year I -Semester

LTP C 0 0 3 1.5

Exercise 1 - Basics

- a) Running instructions in Interactive interpreter and a Python Script
- b) Write a program to purposefully raise Indentation Error and Correct it

Exercise 2 - Operations

- a) Write a program to compute distance between two points taking input from the user (Pythagorean Theorem)
- b) Write a program add.py that takes 2 numbers as command line arguments and prints its sum.

Exercise - 3 Control Flow

- a) Write a Program for checking whether the given number is a even number or not.
- b) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, ..., 1/10
- c) Write a program using a for loop that loops over a sequence. What is sequence?
- d) Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.

Exercise 4 - Control Flow - Continued

- a) Find the sum of all the primes below two million. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
- b) By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

Exercise - 5 Files

- a) Write a program to print each line of a file in reverse order.
- b) Write a program to compute the number of characters, words and lines in a file.

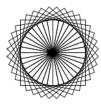
Exercise - 6 Functions

- a) Write a function ballcollide that takes two balls as parameters and computes if they are colliding. Your function should return a Boolean representing whether or not the balls are colliding.
 - Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius If (distance between two balls centers) \leq (sum of their radii) then (they are colliding)
- b) Find mean, median, mode for the given set of numbers in a list.

Exercise - 7 Functions - Continued

- a) Write a function nearly_equal to test whether two strings are nearly equal. Two strings a and b are nearly equal when a can be generated by a single mutation on b.
- b) Write a function dups to find all duplicates in the list.
- c) Write a function unique to find all the unique elements of a list.

Exercise - 8 - Functions - Problem Solving


- a) Write a function cumulative_ product to compute cumulative product of a list of numbers.
- b) Write a function reverse to reverse a list. Without using the reverse function.
- c) Write function to compute GCD, LCM of two numbers. Each function shouldn't exceed one line.

Exercise 9 - Multi-D Lists

- a) Write a program that defines a matrix and prints
- b) Write a program to perform addition of two square matrices
- c) Write a program to perform multiplication of two square matrices

Exercise - 10 GUI, Graphics

- a) Write a GUI for an Expression Calculator usingtk
- b) Write a program to implement the following figures using turtle

2030025: Gender Sensitization & Community Participation

B.Tech. II Year I -Semester

LTPC 2000

Course Objectives:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.

UNIT – I

UNDERSTANDING GENDER

Gender: Why Should We Study It? (Towards a World of Equals: Unit -1)

Socialization: Making Women, Making Men (Towards a World of Equals: Unit -2)

Introduction. Preparing for Womanhood. Growing up Male. First lessons in Caste.

Different Masculinities.

UNIT - II

GENDER AND BIOLOGY

Missing Women: Sex Selection and Its Consequences (Towards a World of Equals: Unit -4)

Declining Sex Ratio. Demographic Consequences.

Gender Spectrum: Beyond the Binary (Towards a World of Equals: Unit -10)

Two or Many? Struggles with Discrimination.

UNIT - III

GENDER AND LABOUR

Housework: the Invisible Labour (Towards a World of Equals: Unit -3)

"My Mother doesn't Work." "Share the Load."

Women's Work: Its Politics and Economics (Towards a World of Equals: Unit -7)

Fact and Fiction. Unrecognized and Unaccounted work. Additional Reading: Wages and

Conditions of Work.

UNIT - IV

ISSUES OF VIOLENCE

Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)

Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further

Reading: "Chupulu".

Domestic Violence: Speaking Out (Towards a World of Equals: Unit -8)

Is Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Additional Reading: New Forums for Justice.

Thinking about Sexual Violence (Towards a World of Equals: Unit -11)

Blaming the Victim-"I Fought for my Life...." - Additional Reading: The Caste Face of Violence.

UNIT - V

GENDER: CO - EXISTENCE

Just Relationships: Being Together as Equals (Towards a World of Equals: Unit -12) Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Additional Reading: Rosa Parks-The Brave Heart.

TEXTBOOK

All the five Units in the Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, GoguShyamala, Deepa Sreenivas and Susie Tharu and published by Telugu Akademi, Hyderabad, Telangana State in the year 2015.

- 1. Menon, Nivedita. Seeing like a Feminist. New Delhi: Zubaan-Penguin Books, 2012
- 2. Abdulali Sohaila. "I Fought For My Life...and Won." Available online at: http://www.thealternative.in/lifestyle/i-fought-for-my-lifeand-won-sohaila-abdulal/

II - II

2046605-ARTIFICIAL INTELLIGENCE

B.Tech. II Year II-Semester

L T P C 2 0 0 2

Prerequisites

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Advanced Data Structures"
- 3. A course on "Design and Analysis of Algorithms"
- 4. A course on "Mathematical Foundations of Computer Science"
- 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

Objectives

- 1. To learn the distinction between optimal reasoning Vs. human like reasoning
- 2. To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- 3. To learn different knowledge representation techniques.
- 4. To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Outcomes

- 1. Ability to formulate an efficient problem space for a problem expressed in natural language.
- 2. Select a search algorithm for a problem and estimate its time and space complexities.
- 3. Possess the skill for representing knowledge using the appropriate technique for a given problem.
- 4. Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT 1

Problem Solving by Search-I

Introduction to AI, Intelligent Agents

Problem Solving by Search –II:

Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search,

Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search.

Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond

Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces,

Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search:

Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems:

Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local

Search for CSPs, The Structure of Problems.

Propositional Logic:

Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem

Proving: Inference and proofs , Proof by resolution, Horn clauses and definite clauses, Forward and

backward chaining, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic:

Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge

Engineering in First-Order Logic.

Inference in First-Order Logic:

Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining,

Resolution.

Knowledge Representation:

Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning

Systems for Categories

UNIT - IV

Planning

Classical Planning:

Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other

Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World:

Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning,

UNIT - V

Uncertain knowledge and Learning

Uncertainty:

Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning:

Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient

Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and

First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning:

Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical

Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance

Information, Inductive Logic Programming.

TEXTBOOKS:

1. Artificial Intelligence A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition, Pearson

Education.

REFERENCES:

- 1. Artificial Intelligence, E.Rich and K.Knight, , 3rd Edition, TMH
- 2. Artificial Intelligence, Patrick Henny Winston, 3rd Edition, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

2046605 -DATABASE MANAGEMENT SYSTEMS (Common to CSE,IT,CSIT,CSM,CSD,CSC,EEE,ECE)

B.Tech. II Year II -Semester

L T P C 3 0 0 3

Prerequisites

1. A course on "Data Structures"

Course Objectives

- 1. To understand the basic concepts and the applications of database systems.
- 2. To master the basics of SQL and construct queries using SQL.
- 3. Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes

- 1. Gain knowledge of fundamentals of DBMS, database design and normal forms
- 2. Master the basics of SQL for retrieval and management of data.
- 3. Be acquainted with the basics of transaction processing and concurrency control.
- 4. Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views, Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: Queries, Constraints, Triggers:form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

Schema refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw hill, Vedition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel, 7th Edition.
- 2. SQL The Complete Reference, James R. Groff, Paul N. Weinberg, 3rdEdition,
- 3. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 4. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.

2040201:BASIC ELECTRICAL ENGINEERING (Common for ECE, CSE, CSC,CSD, CSM, CSIT & IT)

B.Tech. II Year II -Semester

L T P C 3 0 0 3

Course Prerequisites: Nil

Course Objectives:

- To analyse and solve electric circuits.
- To provide an understanding of basics in Electrical circuits.
- To identify the types of electrical machines for a given application.
- To explain the working principles of Electrical Machines and single phase transformers.

Course Outcomes

After completion of this course the student is able to

- Analyse Electrical circuits to compute and measure the parameters of Electrical Energy.
- Comprehend the working principles of Electrical DC Machines.
- Identify and test various electrical switchgear, single phase transformers and assess the ratings needed in given application.
- Comprehend the working principles of electrical AC machines.

UNIT-I: DC Circuits:

Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin's and Norton's Theorems

Unit-II: AC Circuits:

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power and power factor. Analysis of single-phase ac circuits consisting of R, L, C, and RL, RC, RLC combinations (series only). Three phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers:

Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines:

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited demotor. Construction and working of synchronous generators.

UNIT-V: Electrical Installations:

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

- 1. Basic Electrical Engineering By M.S.Naidu and S. Kamakshaiah TMH.
- 2. Basic Electrical Engineering –By T.K.Nagasarkar and M.S. Sukhija Oxford University Press.

- 1. Theory and Problems of Basic Electrical Engineering by D.P.Kothari& I.J. Nagrath PHI.
- 2. Principles of Electrical Engineering by V.K Mehta, S.Chand Publications.
- 3. Essentials of Electrical and Computer Engineering by David V. Kerns, JR. J. David Irwin Pearson.

2046607-DESIGN AND ANALYSIS OF ALGORITHMS (common to CSE,IT,CSIT,CSM,CSD,CSC)

B.Tech. II Year II Semester.

LTPC 3 0 0 3

Prerequisites

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Advanced Data Structures"

Course Objectives:

- 1. Introduces the notations for analysis of the performance of algorithms.
- 2. Introduces the data structure disjoint sets.
- 3. Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate.
- 4. Describes how to evaluate and compare different algorithms using worst-, average-, and best-case analysis.
- 5. Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- 1. Ability to analyze the performance of algorithms
- 2. Ability to choose appropriate data structures and algorithm design methods for a specified application
- 3. Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little ohnotation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph coloring

UNIT - III

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT - IV

Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP- Complete classes, Cook's theorem.

TEXT BOOKS:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahni and Rajasekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearsoneducation.
- 2. Introduction to Algorithms, second edition, T.H.Cormen, C.E.Leiserson, R.L.Rivest, and C.Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

2046608-JAVA PROGRAMMING

(Common to All Branches)

B.Tech. II Year II Semester.

LTPC 3 0 0 3

Prerequisites

1. A course on

Course Objectives:

- 1. To introduce the object-oriented programming concepts.
- 2. To understand object-oriented programming concepts, and apply them in solving problems.
- 3. To introduce the principles of inheritance and polymorphism; and demonstrate how they relate to the design of abstract classes.
- 4. To introduce the implementation of packages and interfaces.
- 5. To introduce the concepts of exception handling and multithreading.
- 6. To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes:

- 1. Able to solve real world problems using OOP techniques.
- 2. Able to understand the use of abstract classes.
- 3. Able to solve problems using java collection framework and I/o classes.
- 4. Able to develop multithreaded applications with synchronization.
- 5. Able to develop applets for web applications.
- 6. Able to design GUI based applications

UNIT-I:

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program,

Functions, Recursion, Enumeration. concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT II:

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism-method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT III:

Exception handling and Multithreading—Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. String handling, Exploringjava.util.Differences between multi threading and multitasking, thread life cycle,creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads.

UNIT IV:

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT V:

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- Japplet, Jframe and Jcomponent, Icons and Labels, text fields, buttons – The Jbutton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables

TEXT BOOKS:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage Learning.

LTPC 3 0 0 3

Objectives of the course:

To introduce the student to computer vision algorithms, methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving

UNIT-I

Recognition Methodology: Conditioning, Labeling, Grouping, Extracting, Matching. Morphological Image Processing: Introduction, Dilation, Erosion, Opening, Closing, Hit-or-Miss transformation, Morphological algorithm operations on binary images, Morphological algorithm operations on gray-scale images, Thinning, Thickining, Region growing, region shrinking.

UNIT-II

Image Representation and Description: Representation schemes, Boundary descriptors, Region descriptors.

Binary Machine Vision: Thresholding, Segmentation, Connected component labeling, Hierarchal segmentation, Spatial clustering, Split & merge, Rule-based Segmentation, Motion-based segmentation

UNIT-III

Area Extraction: Concepts, Data-structures, Edge, Line-Linking, Hough transform, Line fitting, Curve fitting (Least-square fitting).

Region Analysis: Region properties, External points, Spatial moments, Mixed spatial gray-level moments, Boundary analysis: Signature properties, Shape numbers.

UNIT-IV

Facet Model Recognition: Labeling lines, Understanding line drawings, Classification of shapes by labeling of edges, Recognition of shapes, Consisting labeling problem, Back-tracking Algorithm

Perspective Projective geometry, Inverse perspective Projection, Photogrammetry - from 2D to 3D, Image matching: Intensity matching of ID signals, Matching of 2D image, Hierarchical image matching. Object Models And Matching: 2D representation, Global vs. Local features

UNIT-V

Knowledge Based Vision: Knowledge representation, Control- strategies, Information Integration, Object recognition, Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition

TEXT BOOKS:

- 1. Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison- Wesley, 1993.
- 2. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach"

REFERENCES:

1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Thomson Learning

2046674-DATABASE MANAGEMENT SYSTEMS LAB (Common to CSE,IT,CSIT,CSM,CSD,CSC,EEE,ECE)

B.Tech. II Year II Semester.

LTPC 0 0 3 1.5

Course Objectives

- 1. Introduce ER data model, database design and normalization
- 2. Learn SQL basics for data definition and data manipulation

Course Outcomes

- 1. Design database schema for a given application and apply normalization
- 2. Acquire skills in using SQL commands for data definition and data manipulation.
- 3. Develop solutions for database applications using procedures, cursors and triggers

List of Experiments

- 1 Concept design with E-R Model
- 2 Relational Model
- 3 Normalization
- 4 Practicing DDL commands
- 5 Practicing DML commands
- 6 Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
- 7 Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8 Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9 Procedures
- 10 Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw hill, Vedition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel, 7th Edition.
- 2. SQL The Complete Reference, James R. Groff, Paul N. Weinberg, 3rdEdition,
- 3. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 4. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL,Shah,PHI.

2040271: BASIC ELECTRICAL ENGINEERING LAB

B.Tech. II Year II Semester.

LTPC 0 0 2 1

Course Objectives:

To analyze a given network by applying various electrical laws and network theorems

- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:

- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:

- 1. Verification of Ohms Law
- 2. Verification of KVL and KCL
- 3. Verification of superposition theorem.
- 4. Verification of Thevenin's and Norton's theorem.
- 5. Resonance in series RLC circuit.
- 6. Calculations and Verification of Impedance and Current of RL, RC and RLCseries circuits.
- 7. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single PhaseTransformer.
- 8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
- 9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
- 10. Measurement of Active and Reactive Power in a balanced Three-phase circuit.
- 11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor.
- 12. Torque-Speed Characteristics of a Separately/Self Excited DCShunt/Compound Motor.
- 13. Performance Characteristics of a Three-phase InductionMotor.
- 14. Torque-Speed Characteristics of a Three-phase InductionMotor.
- 15. No-Load Characteristics of a Three-phaseAlternator.

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using java collection frame work.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using java collection frame
- work.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.
- 1. a)Use Eclipse or Net bean platform and acquaint with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
 - b) Write a java program that prints all real solutions to the quadratic equation $ax^2 +bx+c=0$. Read in a, b, c and use the quadratic formula.
 - c) Write a java program to implement Fibonacci series.
- 2. a) Write a java program to implement method overloading and constructors overloading. b). Write a java program to implement method overriding.
- a) Write a java program to check whether a given string is palindrome.
 b)Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 4. a) Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
 - b) Write a java program to create user defined exception class and test this class.
- 5. a) Write a Java program to list all the files in a directory including the files present in allits subdirectories.
 - b) Write a java program that displays the number of characters, lines and words in a text file.

- a) Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
 b) Write a Java program that correctly implements the producer consumer problem using the concept of interthread communication.
- 7. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in GridLayout.
- 8. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).
- a) Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).b) Write a java program to demonstrate the key event handlers.
- a) Develop an applet in Java that displays a simple message.b) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.
- 11. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 12. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in selected color. Initially, there is no message shown.
- 13. Develop Swing application which uses JList, JTree, JTable, JTabbedPane and JScrollPane.
- 14. Write a Java program that implements Quick sort algorithm for sorting a list of names in ascending order
- 15. Write a Java program that implements Bubble sort algorithm for sorting in descending order and also shows the number of interchanges occurred for the given set of integers.

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell,

LTPC 2000

The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the "basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism"in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India's legacy of "diversity". It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be "static" and therefore the Constitution of India has also been amended more than one hundred times. The seamendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian ofpeople. It has been protecting not only basic ideals of the Constitution but also strengthened the samethrough progressive interpretations of the text of the Constitution. The judicial activism of the SupremeCourt of India and its historic contributions has been recognized throughout the world and it graduallymade it "as one of the strongest court in the world".

Course content

- 1. Meaning of the constitution law and constitutionalism
- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation
- 7. Federal structure and distribution of legislative and financial powers between the Union and the States
- 8. Parliamentary Form of Government in India The constitution powers and status of the President of India
- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India

- 11. Emergency Provisions: National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21