

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 2270582 COMPILER DESIGN LAB

 B. Tech.IV Year-I Sem L / T / P / C
0 / 0 / 2 / 1

 COURSE OUTCOMES - CO’S

 Apply lexical analysis techniques to recognize identifiers and reserved keywords in source code

using tools like LEX, reinforcing understanding of scanning and token generation.

 Implement top-down parsing algorithms, such as Predictive Parsing, to analyze the syntactic

structure of a given input based on its grammar.

 Construct three-address code generators for translating high-level language constructs into
intermediate representations used in compilers.

 Design and implement bottom-up parsers using SLR(1) and LALR(1) techniques to handle more

complex grammar structures efficiently and accurately.

 Develop and simulate parsing of a given programming language grammar (with constructs like loops,

conditionals, arrays, and scoping) and handle comments and nested blocks using custom-

designed parsers.

LIST OF EXPERIMENTS:

1. Design and develop interactive and dynamic web applications using HTML, CSS, JavaScript and

XML

2. Apply client-server principles to develop scalable and enterprise web applications.

3. Ability to design, develop, and implement a compiler for any language.

4. Able to use lex and yacc tools for developing a scanner and a parser.

5. Able to design and implement LL and LR parsers.

<program> ::= <block>

<block> ::= { <variabledefinition> <slist> }

| { <slist> }

<variabledefinition> ::= int <vardeflist> ;

<vardeflist> ::= <vardec> | <vardec> , <vardeflist>

<vardec> ::= <identifier> | <identifier> [<constant>]

<slist> ::= <statement> | <statement> ; <slist>

<statement> ::= <assignment> | <ifstatement> | <whilestatement>

| <block> | <printstatement> | <empty>

<assignment> ::= <identifier> = <expression>

| <identifier> [<expression>] = <expression>

<ifstatement> ::= if <bexpression> then <slist> else <slist> endif

| if <bexpression> then <slist> endif

<whilestatement> ::= while <bexpression> do <slist> enddo

<printstatement> ::= print (<expression>)

<expression> ::= <expression> <addingop> <term> | <term> | <addingop> <term>

<bexpression> ::= <expression> <relop> <expression>

<relop> ::= < | <= | == | >= | > | !=

<addingop> ::= + | -

<term> ::= <term> <multop> <factor> | <factor>

<multop> ::= * | /

<factor> ::= <constant> | <identifier> | <identifier> [<expression>]

| (<expression>)

<constant> ::= <digit> | <digit> <constant>

<identifier> ::= <identifier> <letterordigit> | <letter>

<letterordigit> ::= <letter> | <digit>

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<empty> has the obvious meaning

Comments (zero or more characters enclosed between the standard C/Java-style comment brackets

/*...*/) can be inserted. The language has rudimentary support for 1-dimensional arrays. The

declaration int a[3] declares an array of three elements, referenced as a[0], a[1] and a[2]. Note also

that you should worry about the scoping of names.

A simple program written in this language is:

{ int a[3],t1,t2; t1=2;

a[0]=1; a[1]=2; a[t1]=3;

t2=-(a[2]+t1*6)/(a[2]-t1);

if t2>5 then print(t2); else

{

int t3; t3=99; t2=-25;

print(-t1+t2*t3); /* this is a comment

