

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

DEPARTMENT OF COMUPTER SCIENCE AND ENGINEERING 2430575 DATA STRUCTURES USING PYTHON LAB

B. Tech. II Year-I Sem

L/T/P/C 0/0/3/1

COURSE OUTCOMES - CO'S

- **C317.1** Identify appropriate searching technique for efficient retrieval of data stored location.
- C317.2 choose sorting technique to represent data in specified format to optimize data searching
- C317.3 Make use of stacks and queues representation, operations and their applications to organize specified data
- **C317.4** Construct tree to perform different traversal techniques
- C317.5 Select Appropriate graph traversal techniques to visit the vertices of a graph

LIST OF EXPERIMENTS:

- **1.** Write a program that uses functions to perform the following operations on singly linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal
- **2.** Write a program that uses functions to perform the following operations on doubly linked list.: i) Creation ii) Insertion iii) Deletion
- **3.** Write a program that uses functions to perform the following operations on circular linked list: i) Creation ii) Insertion iii) Deletion
- **4.** Write a program that implement stack operations using i) Arrays ii) Pointers
- **5.** Write a c program to implement infix to postfix conversion using stack.
- **6.** Write a c program to implement postfix evaluation.
- 7. Write a program that implement Queue operations using i) Arrays ii) Pointers
- **8.** Write a program to implement the tree traversal methods using both recursive and non-recursive.
- 9. Write a program to implement tree operations on i) AVL Trees ii) B Trees iii) Heap
- **10.** Write a program that implements the following sorting methods to sort a given list of integers in ascending order i) Bubble sort ii) Selection sort iii) Insertion sort

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

- 11. Write a program that implements the following sorting methods to sort a given list of integers in ascending order i) Merge sort ii) Quick sort iii) Heap Sort
- **12.** Write a program that use both recursive and non-recursive functions to perform the following searching operations for a Key value in a given list of integers: i) Linear search ii) Binary search
- **13.** Write a program to implement hashing.

CASE STUDY-1 Balanced Brackets

A bracket is considered to be any one of the following characters: (,), {, }, [, or].

Two brackets are considered to be a *matched pair* if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e.,),], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and ().

A matching pair of brackets is *not balanced* if the set of brackets it encloses are not matched.

For example, {[(])} is not balanced because the contents in between { and } are not balanced. The pair of square brackets encloses a single, unbalanced opening bracket, (, and the pair of parentheses encloses a single, unbalanced closing square bracket,].

By this logic, we say a sequence of brackets is balanced if the following conditions are met:

It contains no unmatched brackets.

The subset of brackets enclosed within the confines of a matched pair of brackets is also a matched pair of brackets.

Given strings of brackets, determine whether each sequence of brackets is balanced. If a string is balanced, return YES. Otherwise, return NO.

CASE STUDY-2 Minimum Average Waiting Time

Ir. Raju owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Raju simply minimizes the average waiting time of his sustomers. So he gets to decide who is served first, regardless of how sooner or later a person comes.

Different kinds of pizzas take different amounts of time to cook. Also, once he starts cooking a pizza, he cannot cook another pizza until the first pizza is completely cooked. Let's say we have three customers who come at time t=0, t=1, & t=2 respectively, and the time needed to cook their pizzas is 3, 9, & 6 respectively. If Raju applies first-ome, first-served rule, then the waiting time of three customers is 3, 11, & 16 respectively. The average waiting me in this case is (3 + 11 + 16) / 3 = 10. This is not an optimized solution. After serving the first customer at the t=3, Raju can choose to serve the third customer. In that case, the waiting time will be 3, 7, & 17 respectively. Hence the average waiting time is (3 + 7 + 17) / 3 = 9.

lelp Raju achieve the minimum average waiting time. For the sake of simplicity, just find the integer part of the ninimum average waiting time.