
1

Department of Electronics & Communication

Engineering

(2415521) Digital System Design with FPGAs Lab

M.TECH - I YEAR- I SEMESTER (ECE)

R24 (MLRS) REGULATION

A.Y : 2024-2025

2

INDEX

S. No CONTENTS Page No

1 CERTIFICATE i

2 PREFACE ii

3 ACKNOWLEDGEMENT iii

4 GENERAL INSTRUCTIONS iv

5 SAFETY PRECAUTIONS v

6 INSTITUTE VISION AND MISSION vi

7 DEPARTMENT VISION MISSION, PROGRAMME EDUCATIONAL OBJECTIVES vii

8 PROGRAMME OUTCOMES viii

9 COURSE STRUCTURE, OBJECTIVES & OUTCOMES x

10 CO-PO MAPPING xi

11 EXPERIMENTS xii

12 HDL code to realize all the logic gates
1-6

13 Design and Simulation of Full Adder, Serial Binary Adder, Multi Precession Adder, Carry Look

Ahead Adder.

7-13

14
Design of Combinational circuit using Decoders.

14-16

15 Design of Combinational circuit using encoder (without and with parity). 17-22

16
Design of Combinational circuit using multiplexer.

23-25

17 Design of 4 bit binary to gray converter using MUX or Decoders. 26-29

18 Design of Multiplexer/ Demultiplexer, comparator in all 3 styles. 30-35

19 Modeling of an Edge triggered and Level triggered FFs: D, SR, and JK 36-40

20 Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence

counter

41-45

21 Design of a N- bit Register of Serial- in Serial –out, Serial in parallel out, Parallel in

Serial out and Parallel in Parallel Out using different FF

46-48

3

22 Design of Sequence Detector (Finite State Machine- Mealy and Moore

Machines).

49-52

23 Design of 4- Bit Multiplier, Divider. 53-54

24 Design of ALU to Perform – ADD, SUB, AND-OR, 1’s and 2’s Compliment 55-57

25 Implementing the above designs on FPGA kits 58

i

CERTIFICATE

This is to certify that this manual is a bonafide record of practical work in the Digital

Systems Design with FPGAs lab in I Semester of I -year M. Tech Sem I (ECE) Programme

during the academic year 2022-2023. This book is prepared by Dr. N Srinivas (Associate

Professor), Dr. K. Naveen Kumar (Associate Professor), Mrs. R Babitha (Assistant

Professor), Mrs. B Manjula (Assistant Professor), Department of Electronics and

Communication Engineering.

LAB I/C Head of the Department

ii

PREFACE

It is one of the core areas of ECE and constitutes the largest applications in use today.

Communication has entered into every part of today’s world. This laboratory is intended to

make students understand the use of different Digital Systems Design with FPGA’s a n d is

designed to help students understand the basic principles of design techniques as

well as giving them the insight on design, simulation and hardware implementation of

circuits. The main aim is to provide hands‐on experience to the students so that they are able

to put theoretical concepts to practice. The content of this course consists of two parts,

‘simulation’ and ‘hardwired’. Students will carry out design experiments as a part of the

experiments list provided in this lab manual. Students will be given a specific design

problem, which after completion they will verify using the simulation software or

hardwired implementation.

By,

Dr. N Srinivas (Associate Professor)

Mrs. B Manjula (Assistant Professor)

Mrs. R Babitha (Assistant Professor.

iii

ACKNOWLEDGEMENT

It was really a good experience, working with Digital Systems Design with FPGAs

Laboratory. First, we would like to thank Dr. N. Srinivas, Assoc. Professor, HOD of Department

of Electronics and Communication Engineering, Marri Laxman Reddy Institute of technology &

Management for his concern and giving the technical support in preparing the document.

We are deeply indebted and gratefully acknowledge the constant support and valuable

patronage of Dr. Ravi Prasad, Dean, Marri Laxman Reddy Institute of technology & Management

for giving us this wonderful opportunity for preparing the Digital Communications Laboratory

manual.

We express our hearty thanks to Dr. R.Murali prasad, Principal, Marri Laxman Reddy

Institute of technology & Management, for timely corrections and scholarly guidance.

At last, but not the least I would like to thanks the entire ECE Department faculty those who had

inspired and helped us to achieve our goal.

By,

Dr.NSrinivas(Associate Professor)

Mrs.B .Manjula (Assistant Professor)

Mrs.R.Babitha (Assistant Professor)

iv

GENERAL INSTRUCTIONS

1. Students should report to the concerned labs as per the timetable schedule.

2. Students who turn up late to the labs will in no case be permitted to perform the experiment

scheduled for the day.

3. After completion of the experiment, certification of the concerned staff in-charge in the

observation book is necessary.

4. Students should bring a notebook of about 100 pages and should enter the readings/observations

into the notebook while performing the experiment.

5. The record of observations along with the detailed experimental procedure of the experiment.

6. Performed in the immediate last session should be submitted and certified by the staff member

in-charge.

7. . Not more than one student is permitted to perform the experiment on a setup.

8. When the experiment is completed, students should disconnect the setup made by them, and

should return all the components/instruments taken for the purpose.

9. Any damage of the equipment or burnout of components will be viewed seriously by putting

penalty.

10. Students should be present in the labs for the total scheduled duration.

11. Students are required to prepare thoroughly to perform the experiment before coming to

Laboratory.

12. Procedure sheets/data sheets provided to the student’s should be maintained neatly and to be

returned after the experiment.

v

SAFETY PRECAUTIONS

1. No horseplay or running is allowed in the labs.

2. No bare feet or open sandals are permitted.

3. Before energizing any equipment, check whether anyone is in a position to be injured by

your actions.

4. Read the appropriate equipment instruction manual sections or consult with your

instructor.

5. Before applying power or connecting unfamiliar equipment or instruments into any

circuits.

6. Position all equipment on benches in a safe and stable manner.

7. Do not make circuit connections by hand while circuits are energized. This is especially.

8. Dangerous with high voltage and current circuits.

vi

INSTITUTION VISION AND MISSION

VISION

To establish as an ideal academic institution in the service of the nation, the world and the humanity

by graduating talented engineers to be ethically strong, globally competent by conducting high

quality research, developing breakthrough technologies, and disseminating and preserving

technical knowledge.

MISSION

To fulfill the promised vision through the following strategic characteristics and aspirations:

A. Contemporary and rigorous educational experiences that develop the engineers and

managers;

B. An atmosphere that facilitates personal commitment to the educational success of students

in an environment that values diversity and community;

C. Prudent and accountable resource management;

D. Undergraduate programs that integrate global awareness, communication skills and team

building;

E. Leadership and service to meet society’s needs;

F. Education and research partnerships with colleges, universities, and industries to graduate

education and training that prepares students for interdisciplinary engineering research

and advanced problem-solving abilities;

G. Highly successful alumni who contribute to the profession in the global society.

vii

DEPARTMENT VISION, MISSION, PROGRAMME EDUCATIONAL

OBJECTIVES AND SPECIFIC OUTCOMES

Vision and Mission

Our Vision

Imparting quality technical education through research, innovation and team work for a lasting

technology development in the area of Electronics and Communication Engineering.

Our Mission

To develop a strong center of excellence for education and research with excellent infrastructure

and well qualified faculties to instill in them a passion for knowledge.

To achieve the Mission the department will:

M1: Establish a unique learning environment to enable the students to face the challenges of the

Electronics and Communication Engineering field.

M2: Promote the establishment of center of excellence in niche technology areas to nurture the

spirit of innovation and creativity among faculty and students.

M3: Provide ethical and value-based education by promoting activities addressing the societal

needs.

M4: Enable students to develop skills to solve complex technological problems of current times

and also provide a framework for promoting collaborative and multidisciplinary activities.

viii

PEO's & PO's

PROGRAMME EDUCATIONAL OBJECTIVES

PEO 1: Have successful careers in Industry.

PEO 2: Show excellence in higher studies/ Research.

Program Outcomes (PO)

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and engg. specialization to the solution of complex engineering problems.

PO 2: Problem analysis: Identify, formulate, research literature, and analyze engineering problems

to arrive at substantiated conclusions using first principles of mathematics, natural, and

engineering sciences.

PO 3: Design/development of solutions: Design solutions for complex engineering problems and

design system components, processes to meet the specifications with consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

PO 4: Conduct investigations of complex problems: Use research-based knowledge including

design of experiments, analysis and interpretation of data, and synthesis of the information

to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader

in teams, and in multidisciplinary settings.

ix

PO 10: Communication: Communicate effectively with the engineering community and with

society at large. Be able to comprehend and write effective reports documentation. Make

effective presentations, and give and receive clear instructions.

PO 11: Project management and finance: Demonstrate knowledge and understanding of

engineering and management principles and apply these to one’s own work, as a member and

leader in a team. Manage projects in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

x

COURSE STRUCTURE

Level Credits Periods/Week Prerequisites

PG

2

3

Entire subject of

Digital System Design

Evaluation Scheme:

MID (Internal Lab) Semester Test 40 marks

End Semester Lab external Examination 60marks

The end semester examination shall be conducted with an external examiner and internal

examiner.

The external examiner shall be appointed by the principal / Chief Controller of examinations

Course Objectives:

 The ability to code and simulate any digital function in Verilog HDL.

 Know the difference between synthesizable and non-synthesizable code.

 Understand library modeling, behavioral code and the differences between them.

 Understand the differences between simulator algorithms.

 Learn good coding techniques per current industrial practices.

 Understand logic verification using Verilog simulation.

Course Outcomes:

At the end of the laboratory work, students will be able to

 Describe Verilog hardware description languages (HDL).

 Design Digital Circuits in Verilog HDL.

 Write behavioral models of digital circuits.

 Write Register Transfer Level (RTL) models of digital circuits.

xi

 Verify behavioral and RTL models.

 Describe standard cell libraries and FPGAs.

 Synthesize RTL models to standard cell libraries and FPGAs.

 Implement RTL models on FPGAs and Testing & Verification.Course Outcomes (COs)

At the end of the laboratory work, students will be able to

CO1: To Design Digital Circuits in Verilog HDL.

CO2: Write behavioral models of digital circuits.

CO3: V e r i f y b e h a v i o r a l a n d R T L models.

CO4: To Synthesize RTL models to standard cell libraries and FPGAs.

CO5: To Implement RTL models on FPGAs and Testing & Verification.

Course Outcomes (CO’s)–Program Outcomes (PO’s)Mapping

CO’sPo’s PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 3 3 - - 3 - - - - - - -

CO2 3 3 - - 3 - - - - - - -

CO3 3 3 - - 3 - - - - - - -

CO4 3 3 - - 3 - - - - - - -

CO5 3 3 - - 3 - - - - - - -

 Simple-1 Moderate-2 High-3

xii

EPT. OF ECE @ MLRITM D Page 1

HDL CODE TO REALIZE ALL

LOGIC GATES

EXPT. NO: 1

DATE:

AIM:To develop the source code for logic gates by using VERILOG and obtain thesimulation,

Synthesis, place and route and implement into FPGA.

SOFTWARE & HARDWARE:

1. CADENCE

2. FPGA-SPARTAN-3

LOGIC DIAGRAM:

AND GATE:

LOGIC DIAGRAM:

TRUTH TABLE:

A B Y=AB

0 0 0

0 1 0

1 0 0

1 1 1

OR GATE

LOGIC DIAGRAM

TRUTH TABLE

A B Y=A+B

0 0 0

0 1 1

1 0 1
1 1 1

NOT GATE:

LOGIC DIAGRAM:

DEPT. OF ECE @ MLRITM Page 2

TRUTH TABLE:

A Y=A’

0 0

1 0

NAND GATE:

LOGIC DIAGRAM:

A B Y=(AB)’

0 0 1

0 1 1

1 0 1

1 1 0

TRUTH TABLE:

OR GATE

LOGIC DIAGRAM

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

TRUTH TABLE

XOR GATE

LOGIC DIAGRAM

TRUTH TABLE:

DEPT. OF ECE @ MLRITM Page 3

A B

0 0 0

0 1 1

1 0 1

1 1 0

XNOR GATE:

LOGIC DIAGRAM:

A B

0 0 1

0 1 0

1 0 0

1 1 1

TRUTH TABLE:

Description:

A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs

a logical operation on one or more logical inputs, and produces a single logical output. Depending on the context,

the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may

refer to a non-ideal physical device.

VERILOG SOURCE CODE:

DATA FLOW MODEL:

modulelogicgates1(a,b,c); input a;

input b; output [6:0]c;

assignc[0]=a&b;

assignc[1]=a|b;

assignc[2]=~(a&b);

assign c[3]=~(a|b);

assignc[4]=a^ b;

assignc[5]= ~(a ̂ b);

assign c[6]=~ a;

endmodule

(OR)

module all(a,b,an,o,na,no,nt,xo,xn);

input a,b;

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation
https://en.wikipedia.org/wiki/Rise_time
https://en.wikipedia.org/wiki/Fan-out

DEPT. OF ECE @ MLRITM Page 4

output (an,na,no,nt,xo,xn);

assign#5 an=a&b;

assign#5 na=~(a&b);

assign#5 o=a|b;

assign#5 no=~(a|b);

assign#5 nt=~a;

assign#5 xo=a^b;

assign#5 xn=~(a^b);

endmodule

BEHAVIOURAL MODELLING OF AND GATE:

module andg(a,b,an); input a,b;

output an; reg an;

always @(a or b) begin

if(a==1`b0 && b==1`b0) an=1`b0;

else if(a==1`b0 && b==1`b1) an=1`b0;

else if(a==1`b1 && b=1`b0) an=1`b0;

else if(a==1`b1 && b==1`b1) an=1`b1;

end

endmodule

BEHAVIOURAL MODEL FOR OR GATE,NOR,NAND,NOR,XOR,X-NOR:

module all(a,b,o,na,no,nt,xo,xn);

input a,b;

output(o,na,,o,nt,xo,xn);

reg o,na,no,nt,xo,xn;

always @(a or b)

begin

o=a|b;

na=~(a|b);

nt=~(a);

xo=(a^b);

xn=~(a^b);

endmodule

STRUCTURAL MODEL:

DEPT. OF ECE @ MLRITM Page 5

module all(a,b,an,o,na,no,nt,xo,xn);

input a,b;

output (an,o,na,no,nt,xo,xn);

wire t1,t2,t3,t4;

and a1,(an,a,b);

or a2(o,a,b);

not a3(nt,a);

and a4(t1,a,b);

not a5(na,t1);

or a6(t2,a,b);

not a7(no,t2);

xor a8(xo,a,b);

xor a9(t3,a,b);

not a10(xn,t3);

endmodule

MIXED MODEL:

module all(a,b,an,o,na,no,nt,xo,xn);

input a,b;

output (an,o,na,no,nt,xo,xn);

reg na,no,nt,xo,xn;

assign #5 an=a&b;

assign #5 o=a|b: not a1(nt,a);

always @(a or b)

begin na=~(a&b);

no=~(a^b); xo=a^b;

xn=~(a^b);

end

endmodule

Simulation output:

DEPT. OF ECE @ MLRITM Page 6

Gates A B Y

NOT 0 x

1 x

AND 0 0

0 1

1 0

1 1

OR 0 0

0 1

1 0

1 1

NAND 0 0

0 1

1 0

1 1

NOR 0 0

0 1

1 0

1 1

XOR 0 0

0 1

1 0

1 1

XNOR 0 0

0 1

1 0

1 1

DEPT. OF ECE @ MLRITM Page 7

Design and Simulation of Full Adder, Serial Binary Adder,

Multi Precession

Adder, Carry Look Ahead Adder

EXPT. NO: 2

DATE:

AIM:To write a HDL code to describe the functions of a full Adder Serial Binary Adder,

Multi Precession Adder, Carry Look Ahead Adder.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

A full adder consists of 3 inputs and 2 outputs. Fig 7.1 shows truth table of full

adder. Use “assign” keyword to represent design in data flow style. The output

signal expressions can be obtained from the truth table using K-maps.

e

2.1 Logic diagram for 1-bit full adder

T

able 2.1

Truth

table for

1-bit

full

adder

F

i

g

u

r

DEPT. OF ECE @ MLRITM Page 8

PROCEDURE

 Create a module with required number of variables and mention it’s input/output.

 Write the description of the full adder in 3 styles.

 Create another module referred as test bench to verify the functionality.

 Follow the steps required to simulate the design and compare the obtained output with the

required one.

CODE

// full adder

module p10(a,b,c,sum,carry); output

sum,carry;

input a,b,c; wire

y0,y1,y2; xor

g1(y0,a,b);

and g2(y1,a,b);

xor g3(sum,y0,c);

and g4(y2,y0,c); or

g5(carry,y2,y1);

endmodule

To design and simulate the HDL code for carry look ahead adder

PROGRAM LOGIC

Ripple-carry addition suffers from an impractical propagation delay cause by the

DEPT. OF ECE @ MLRITM Page 9

sequential generation of arithmetic carries. In other words, ci1 is dependent on ci ,

which is further dependent on ci1 , etc. The effect of this carry chain is a

propagation delay that has a linear dependency on n, the bit width of the adder.

Therefore, methods that compute the arithmetic carries in parallel have potential

performance benefits over ripple-carry addition.

As the name implies, carry-look ahead is one such technique for high-speed addition

that computes arithmetic carries in a parallel fashion. To understand how exactly a

carry-look ahead adder works, consider the addition of two numbers, X and Y, such that

x iis the ith ith binary digit of X, and y is ti he ith binary digit

of Y. The (i 1)th arithmetic carry is c i1and is computed as follows:

ci1 xi yi xici yici

 xi yi (xi yi)ci (2)

(1)

The effect of simply factoring out ci from the last two terms in expression (1) is

shown in expression (2). Now observe that

conditions exists:

ci1 is logic ‘1’ if either of the two

xi yi is logic

‘1’

xi yi is logic ‘1’1 and there is a previous carry (i.e. ci =1)

Therefore,
xi yi is referred to as generate function because when ‘1’, a carry is

generated, while
x

i
 y

i is referred to as the propagate function because when ‘1’, it will

propagate a carry. In mathematical terms, we see that

gi xi yi (3)

pi xi yi (4)

ci1 gi pici (5)

Clearly, expressions (3) and (4) do not depend on the carry in the previous bit position and thus, can

be generated in parallel. It turns out, we can write expression (5) for the first four carries in such a way that they,

DEPT. OF ECE @ MLRITM Page 10

too, do not depend on one another, but rather only depend on the input carry, c0, and the
gi and

pi . Examine the

expressions below to convince yourself of this.

c1 g0 p0c0

c2 g1 p1c1 g1 p1g0 p1p0c0

c3 g2 p2c2 g2 p2g1 p2 p1g0 p2 p1 p0c0

c4 g3 p3c3 g3 p3g2 p3 p2g1 p3 p2 p1g0 p3 p2 p1 p0c0

Although the expression for
ci becomes increasingly complex, the theoretical gate-

delay for each of the above expressions, given the
gi ’s,

pi ’s, and
c0 , is ∆g =

2. However, the increased complexity is reflected in the number of inputs to each gate (i.e.

the gate fan-in) and the number of gates required. Figure 1 illustrates this point with the

gate-level schematic for each of the sub-modules within a 4-bit carry-lookahead adder. One

thing to note is that:

pi xiyi

si pici

In other words, expression (10) is being used in lieu expression (4). It turns out that

expression (5) works correctly in either case, and the former allows the Sum to be

computed with expression (11). Before moving on, let us try to understand how data

flows through the 4-bit carry-lookahead adder. To do so, we enumerate through the

steps below:

Data arrives at the Generate/Propagate Unit, and the
g

i ’s and
p

i ’s, are computed in one

gate-delay (i.e.∆g= 1).

The
gi ’s and

pi ’s are forwarded to the Carry-Lookahead Unit, which generates all of the

carries in two gate-delays, ∆g = 2.

The carries are then fed into the Summation Unit, which computes the sum bits, the
si ’s, in

one gate-delay ∆g = 1.

DEPT. OF ECE @ MLRITM Page 11

Figure 2.2 Carry-look ahead Adder

For simplicity, we are assuming that all gates have the same delay time. This

assumption may or may not be true depending on the target technology that is being

used to implement your logic. However, for the sake of comparison with other addition

techniques, this model works well. Summarizing the above steps, we can see that the

propagation delay for a 4-bit adder is no longer determined by a carry chain and is only

four gate-delays, (∆g= 4). The pre-lab assignment will include an exercise which asks

you to look at the gate count of a 4-bit Carry- Look ahead Adder.

PROCEDURE

Create a module with required number of variables and mention it’s

input/output.

Write the description of the carry look ahead adder using data flow model or gate

level model.

Create another module referred as test bench to verify the functionality.

CODE

Follow the steps required to simulate the design and compare the obtained output

with the required one.

module p21(a,b,cin,sum,cout);

input[3:0] a,b;

DEPT. OF ECE @ MLRITM Page 12

input cin;

output [3:0] sum; output cout;

wire p0,p1,p2,p3,g0,g1,g2,g3,c1,c2,c3,c4;

assign p0=(a[0]^b[0]),

p1=(a[1]^b[1]),

p2=(a[2]^b[2]),

p3=(a[3]^b[3]);

assign g0=(a[0]&b[0]),

g1=(a[1]&b[1]),

g2=(a[2]&b[2]),

g3=(a[3]&b[3]);

assign c0=cin, c1=g0|(p0&cin),

c2=g1|(p1&g0)|(p1&p0&cin),

c3=g2|(p2&g1)|(p2&p1&g0)|(p1&p1&p0&cin),

c4=g3|(p3&g2)|(p3&p2&g1)|(p3&p2&p1&g0)|(p3&p2&p1&p0&cin); assign

sum[0]=p0^c0,

sum[1]=p1^c1,

sum[2]=p2^c2,

sum[3]=p3^c3;

assign cout=c4;

endmodule

PRE LAB QUESTIONS

1. What is the functionality of the adder?

2. Design a ripple carry adder and mention its disadvantage.

3. List the various adders and its pros and cons.

4. What is a half adder?

5. Write the sum and carry expression for half adder.

6. What is a full adder?

7. Write the sum and carry expression for 1-bit full adder.

8. Write the difference and barrow out expressions for 1-bit subtractor

9. What is a parallel adder/subtractor?

DEPT. OF ECE @ MLRITM Page 13

LAB ASSIGNMENT

1. Design 4-bit ripple carry adder using HDL.

2. Design 4-bit carry look ahead adder using HDL.

3. Observe the RTL schematic of the designed 4-bit look ahead adder.

4. Design a 4-bit ripple carry adder using full adders.

5. Implement full adder using decoder.

6. Implement full subtractor using decoder.

7. Implement a 4-bit adder/subtractor.

8. Design a full adder using minimum number of NAND gates.

POST LAB QUESTIONS

1 Realize a full adder using two half adders.

2 What is the amount of delay involved in ripple carry adder?

3 Compare serial adder and parallel adder with respect to speed and

complexity.

4 Implement a single circuit which can perform both

addition and subtraction operations on binary input bits.

DEPT. OF ECE @ MLRITM Page 14

Design of Combinational circuit using Decoders. EXPT. NO: 3

DATE:

AIM:

To design and simulate the HDL code for the following combinational circuits

3 to 8 Decoder

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

Program logic for Decoder

A decoder is a multiple-input, multiple-output logic circuit which converts

coded inputs into coded outputs, where the input and output codes are

different. The input code generally has fewer bits than the output code.

Each input code word produces a different output code word, i.e., there is

one-to-one mapping from input code words into output code words. This

one-to-one mapping can be expressed in a truth table.

The most common decoder circuit is an n-to-2n decoder or binary

decoder. Such a decoder has an n-bit binary input code and a 1-out-of-2n

output code. A binary decoder is used when you need to activate exactly

one of 2noutputs based on an n- bit input value.

Figure 3.1 shows the general structure of the 3 to 8 decoder circuit and its

truth table.

DEPT. OF ECE @ MLRITM Page 15

CODE:

Figure 3.1: General Structure of 3 to 8 Decoder and its truth table

// 3 to 8 decoder

module

p3(i,d);

input

[2:0]i;

output [7:0]d;

assign d[0]=(~i[2])&(~i[1])&(~i[0]);

assign d[1]=(~i[2])&(~i[1])&(i[0]);

assign d[2]=(~i[2])&(i[1])&(~i[0]);

assign d[3]=(~i[2])&(i[1])&(i[0]);

assign d[4]=(i[2])&(~i[1])&(~i[0]);

assign d[5]=(i[2])&(~i[1])&(i[0]);

assign d[6]=(i[2])&(i[1])&(~i[0]);

assign

d[7]=(i[2])&(i[1])&(i[0]);

endmodule

PRE LAB QUESTIONS

1 What is a decoder?

2 What for enable inputs are used in decoder?

DEPT. OF ECE @ MLRITM Page 16

LAB ASSIGNMENT

1. Implement full adder circuit using decoder and two OR gates.

2. Implement 3x8 decoder using 2x4 decoder and additional logic.

3. Construct a 4x16 decoder using two 3x8 decoder and additional logic. Show the

schematic diagram neatly?

4. Design 2-to-4 decoder using only NOR gates.

5. Construct a 5 x 32 decoder with four 3x 8 decoders with enable and one 2 x 4 decoder.

DEPT. OF ECE @ MLRITM Page 17

Design of Combinational circuit using encoder (without and

with parity).

EXPT. NO: 4

DATE:

AIM: To design and simulate the HDL code for the following combinational circuits 8 to 3

Encoder (With priority and without priority).

RESOURCES

PC installed with CADENCE tool.

Program logic for Encoder

An encoder has M input and N output lines. Out of M input lines only one is

activated at a time and produces equivalent code on output N lines. If a device

output code has fewer bits than the input code has, the device is usually called

an encoder. Example Octal-to-Binary take 8 inputs and provides 3 outputs.

For an 8- to-3 binary encoder with inputs D0-D7 the logic expressions of the

outputs XYZ are obtained by using the Table 4.1.

X = D4 + D5 +

D6 + D7

Y= D2 + D3 + D6

+ D7

Z = D1 + D3 + D5

+ D7

T

a

b

l

e

4

DEPT. OF ECE @ MLRITM Page 18

.

1

:

T

r

u

t

h

T

a

b

l

e

f

o

r

8

-

3

E

n

c

o

d

e

r

w

i

DEPT. OF ECE @ MLRITM Page 19

t

h

D

7

-

D

0

i

n

p

u

t

s

he main disadvantages of standard digital encoders is that they can generate the wrong

output code when there is more than one input present at logic level “1”.

The Priority Encoder solves the problems mentioned above by allocating a priority

level to each input. The priority encoders output corresponds to the currently active

input which has the highest priority. So when an input with a higher priority is present,

all other inputs with a lower priority will be ignored. The priority encoder comes in

many different forms with an example of an 8- input priority encoder along with its

O

n

e

o

f

t

DEPT. OF ECE @ MLRITM Page 20

truth table shown in Figure 4.1

PROCEDURE

1. Create a module with required number of variables and mention it’s input/output.

2. Implement the logic for decoder or encoder using behavioral or gate level model.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output with

the corresponding truth table.

CODE

// 8 to 3 Encoder without priority module

p2(d,e);

input [7:0] d;

output [2:0]e;

assign e[2]= d[4] | d[5] | d[6] | d[7];

assign e[1]= d[2] | d[3] | d[6] | d[7];

assign e[0]= d[1] | d[3] | d[5] | d[7];

endmodule

// 8 to 3 Encoder with priority module

p4(din, dout);

input [7:0] din;

output [2:0] dout;

reg [2:0] dout;

DEPT. OF ECE @ MLRITM Page 21

always @(din)

begin

if (din[7]==1'b1) dout=3'b111;

else if (din[6]==1'b1) dout=3'b110; else

if (din[5]==1'b1) dout=3'b101; else if

(din[4]==1'b1) dout=3'b100; else if

(din[3]==1'b1) dout=3'b011; else if

(din[2]==1'b1) dout=3'b010; else if

(din[1]==1'b1) dout=3'b001; else if

(din[0]==1'b1) dout=3'b000; else

dout=3'bXXX;

end

endmodule

PRE LAB QUESTIONS

1. What is an encoder?

2. What is a priority encoder?

3. How many input and output lines are there for a 128x7 encoder.

LAB ASSIGNMENT

1. Write a Verilog code to implement Octal-to-Binary Encoder?

2. Write a Verilog code to implement a 8x3 Priority Encoder?

3. Write a Verilog code to implement Decimal-to-BCD Encoder?

POST LAB QUESTIONS

1. Write code for a parallel encoder and a priority encoder.

2. What is the difference between wire and reg data type ?

3. What is the difference between the following two lines of Verilog code? #5 a

= b;

a = #5 b;

4. What is the use of Priority Encoder?

DEPT. OF ECE @ MLRITM Page 22

DEPT. OF ECE @ MLRITM Page 23

Design of Combinational circuit using multiplexer.

EXPT. NO: 5

DATE:

AIM:To write HDL codes for an 8X1 multiplexer r and verify its functionality.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

In the large-scale-digital systems, a single line is required to carry on two or more digital

signals – and, of course! At a time, one signal can be placed on the one line. But, what is

required is a device that will allow us to select; and, the signal we wish to place on a

common line, such a circuit is referred to as multiplexer.

The function of a multiplexer is to select the input of any ‘n’ input lines and feed that to

one output line. The function of a de-multiplexer is to inverse the function of the

multiplexer and the shortcut forms of the multiplexer. The de-multiplexers are mux and

demux. Some multiplexers perform both multiplexing and de-multiplexing operations. The

main function of the multiplexer is that it combines input signals, allows data compression,

and shares a single transmission channel.

Figure 5.1 Multiplexer and De-multiplexer

DEPT. OF ECE @ MLRITM Page 24

The output value of a 8x1 multiplexer can be represented using the equation (5.1)

Y S2 S1 S0 Io S2 S1S0 I1 S2S1 S0 I2 S2S1S0 I3 S2 S1 S0I4 S2 S1S0 I5 S2S1 S0I6 S2S1S0 I7

… (5.1)

PROCEDURE

1. Create a module with required number of variables and mention it’s input/output.

2. Write the description of the multiplexer or demultiplexer using data flow model or

gate level model

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output with

the corresponding truth table.

CODE

// 8:1 multiplexer module

p5(s,i,y);

input [7:0]i;

input [2:0]s;

output y; wire

[2:0]sb;

not(sb[0],s[0]);

not(sb[1],s[1]);

not(sb[2],s[2]);

assign y = (sb[2]&sb[1]&sb[0]&i[0]) | (sb[2]&sb[1]&s[0]&i[1]) |

(sb[2]&s[1]&sb[0]&i[2]) | (sb[2]&s[1]&s[0]&i[3]) | (s[2]&sb[1]&sb[0]&i[4]) |

(s[2]&sb[1]&s[0]&i[5]) | (s[2]&s[1]&sb[0]&i[6]) | (s[2]&s[1]&s[0]&i[7]);

endmodule

PRE LAB QUESTIONS

DEPT. OF ECE @ MLRITM Page 25

1. What is a multiplexer?

2. What is the relationship between input lines and select lines?

3. Why a multiplexer is called a data selector?

4. Mention the applications of multiplexer and demultiplexer.

LAB ASSIGNMENT

5 Implement a full adder with two 4x1 multiplexers.

6 Implement 2 to 4 decoder using 1x4 demultiplexer.

7 Implement a full subtractor with two 4x1 multiplexers.

8 Realize 8x1 mux using 4x1 multiplexer.

9 Implement half adder using 2x1 multiplexer.

10 F(W, X ,Y, Z) m (0,1,3,5, 7) using 8x1 multiplexer.

11 Write code for 1x4 Multiplexer using different coding methods.

POST LAB QUESTIONS

12 Can a multiplexer be used to realize a logic function?

13 Differentiate between decoder and demultiplexer.

14 What are the applications of multiplexers?

15 Design an OR gate from 2:1 MUX.

16 Design a D and T flip flop using 2:1 multiplexer

17Implement the function f(A,B,C)= Σm (0,1,3,5,7) by using multiplexer.

DEPT. OF ECE @ MLRITM Page 26

DESIGN OF CODE CONVERTERS
EXPT. NO : 06

DATE:

AIM:To Design and simulate the HDL code for the following combinational circuits

4 - Bit binary to gray code converter

4 - Bit gray to binary code converter

Comparator

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

Binary to gray code converter logic

This conversion method strongly follows the EX-OR gate operation between binary bits.

The steps to perform binary to grey code conversion are given bellow.

To convert binary to grey code, bring down the most significant digit

of the given binary number, because, the first digit or most significant

digit of the grey code number is same as the binary number.

To obtain the successive grey coded bits to produce the equivalent

grey coded number for the given binary, add the first bit or the most

significant digit of binary to the second one and write down the result

next to the first bit of grey code, add the second binary bit to third one

and write down the result next to the second bit of grey code, follow

this operation until the last binary bit and write down the results

based on EX-OR logic to produce the equivalent grey coded binary.

Gray to binary code converter logic

DEPT. OF ECE @ MLRITM Page 27

This conversion method also follows the EX-OR gate operation between grey &

binary bits. The steps to perform grey code to binary conversion are given below.

To convert grey code to binary, bring down the most significant digit of the

given grey code number, because, the first digit or the most significant digit of

the grey code number is same as the binary number.

To obtain the successive second binary bit, perform the EX-OR operation

between the first bit or most significant digit of binary to the second bit of the

given grey code.

PROCEDURE

To obtain the successive third binary bit, perform the EX-OR operation

between the second bit or most significant digit of binary to the third MSD

(most significant digit) of grey code and so on for the next successive binary

bits conversion to find the equivalent.

Create a module with required number of variables and mention it’s input/output.

Write the description of the code converter using data flow model or

gate level model.

Create another module referred as test bench to verify the functionality.

Follow the steps required to simulate the design and compare the

obtained output with the required one.

CODE

// binary to gray code converter module

p7(b,g);

input [3:0] b;

output [3:0] g;

reg [3:0] g;

always@(b)

begin g[3]=b[3];

g[2]=b[3]^b[2];

g[1]=b[2]^b[1];

DEPT. OF ECE @ MLRITM Page 28

g[0]=b[1]^b[0];

end endmodule

//gray to binary converter

module p8(g,b);

input [3:0] g;

output [3:0] b;

reg [3:0] b;

always@(g)

begin b[3]=g[3];

b[2]=b[3]^g[2];

b[1]=b[2]^g[1];

b[0]=b[1]^g[0];

end endmodule

// 4 bit comparator

module p9(a,b,g,l,e); input

[3:0]a;

input [3:0]b;

output g,l,e; reg

g,l,e; always@(a,b)

begin

if (a<b) begin

e = 0; l = 1; g = 0;

end

else if (a==b)

begin

e = 1; l = 0; g = 0;

end else

begin

e = 0; l = 0; g = 1;

end end

endmodule

DEPT. OF ECE @ MLRITM Page 29

PRE LAB QUESTIONS

1 What is a code converter? List some of the code converters.

2 What are the typical applications of gray code?

3 Distinguish between the weighted and non-weighted codes. Give examples.

4 Realize the Boolean expressions for binary to gray code conversion

5 Realize the Boolean expressions for gray to binary code conversion

LAB ASSIGNMENT

1 Design BCD to Excess-3 code converter.

2 Design a BCD to seven segment code converter.

3 Design octal to binary code converter.

POST LAB QUESTIONS

1. What is the difference between blocking and non-blocking assignments?

2. What is the difference between case x and case statements?

3. What is this ̀ timescale compiler directive?

4. What is sensitivity list?

DEPT. OF ECE @ MLRITM Page 30

DESIGN OF MULTIPLEXER AND DEMULTIPLEXER
EXPT. NO : 07

DATE:

AIM:To write HDL codes for an 8X1 multiplexer and 1X8 demultiplexer and verify its

functionality.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

In the large-scale-digital systems, a single line is required to carry on two or more digital

signals – and, of course! At a time, one signal can be placed on the one line. But, what is

required is a device that will allow us to select; and, the signal we wish to place on a

common line, such a circuit is referred to as multiplexer.

The function of a multiplexer is to select the input of any ‘n’ input lines and feed that to

one output line. The function of a de-multiplexer is to inverse the function of the

multiplexer and the shortcut forms of the multiplexer. The de-multiplexers are mux and

demux. Some multiplexers perform both multiplexing and de-multiplexing operations. The

main function of the multiplexer is that it combines input signals, allows data compression,

and shares a single transmission channel.

DEPT. OF ECE @ MLRITM Page 31

Figure 7.1 Multiplexer and De-multiplexer

The output value of a 8x1 multiplexer can be represented using the equation (7.1)

Y S2 S1 S0 Io S2 S1S0 I1 S2S1 S0 I2 S2S1S0 I3 S2 S1 S0I4 S2 S1S0 I5 S2S1 S0I6 S2S1S0 I7

… (7.1)

For the combination of selection input, the data line is connected to the output line. The 8x1

multiplexer requires 8 AND gates, one OR gate and 3 selection lines. As an input, the combination

of selection inputs are giving to the AND gate with the corresponding input data lines.

In a similar fashion, all the AND gates are given connection. In this 8x1 multiplexer, for

any selection line input, one AND gate gives a value of 1 and the remaining all AND gates

give 0. And, finally, by using OR gate, all the AND gates are added; and, this will be equal

to the selected value.

The demultiplexer is also called as data distributors as it requires one input, 3 selected

lines and 8 outputs. De-multiplexer takes one single input data line, and then switches it to

any one of the output line. 1-to-8 demultiplexer circuit diagram is shown below; it uses 8

AND gates for achieving the operation. The input bit is considered as data D and it is

transmitted to the output lines.

DEPT. OF ECE @ MLRITM Page 32

Figure 7.2 Demultiplexer circuit diagram

PROCEDURE

CODE

Create a module with required number of variables and mention it’s input/output.

Write the description of the multiplexer or demultiplexer using data

flow model or gate level model

Create another module referred as test bench to verify the functionality.

Follow the steps required to simulate the design and compare the

obtained output with the corresponding truth table.

// 8:1

multiplexer

module

p5(s,i,y);

input [7:0]i;

i

n

p

u

t

DEPT. OF ECE @ MLRITM Page 33

[

2

:

0

]

s

;

o

u

t

p

u

t

y

;

w

i

r

e

[

2

:

0

]

s

b

;

not(sb[0],s[0]);

not(sb[1],s[1]);

not(sb[2],s[2]);

assign y = (sb[2]&sb[1]&sb[0]&i[0]) | (sb[2]&sb[1]&s[0]&i[1]) |

(sb[2]&s[1]&sb[0]&i[2]) | (sb[2]&s[1]&s[0]&i[3]) |

(s[2]&sb[1]&sb[0]&i[4]) |(s[2]&sb[1]&s[0]&i[5]) |

(s[2]&s[1]&sb[0]&i[6]) | (s[2]&s[1]&s[0]&i[7]); endmodule

DEPT. OF ECE @ MLRITM Page 34

//1:8 Demultiplexer

module

p6(din,s,do

ut); output

[7:0]dout ;

input din ;

input [2:0]s ;

assign dout[7] = din & (s[2]) & (s[1]) & (s[0]);

assign dout[6] = din & (s[2]) & (s[1]) & (~s[0]);

assign dout[5] = din & (s[2]) & (~s[1]) & (s[0]);

assign dout[4] = din & (s[2]) & (~s[1]) & (~s[0]);

assign dout[3] = din & (~s[2]) & (s[1]) & (s[0]);

assign dout[2] = din & (~s[2]) & (s[1]) & (~s[0]);

assign dout[1] = din & (~s[2]) & (~s[1]) & (s[0]);

assign dout[0] = din & (~s[2]) & (~s[1]) &

(~s[0]); endmodule

PRE LAB QUESTIONS

1. What is a multiplexer?

2. What is the relationship between input lines and select lines?

3. Why a multiplexer is called a data selector?

4. Mention the applications of multiplexer and demultiplexer.

LAB ASSIGNMENT

1. Implement a full adder with two 4x1 multiplexers.

2. Implement 2 to 4 decoder using 1x4 demultiplexer.

3. Implement a full subtractor with two 4x1 multiplexers.

4. Realize 8x1 mux using 4x1 multiplexer.

5. Implement half adder using 2x1 multiplexer.

6. F(W, X ,Y, Z) m (0,1,3,5, 7) using 8x1 multiplexer.

DEPT. OF ECE @ MLRITM Page 35

7. Write code for 1x4 Multiplexer using different coding methods.

POST LAB QUESTIONS

1. Can a multiplexer be used to realize a logic function?

2. Differentiate between decoder and demultiplexer.

3. What are the applications of multiplexers?

4. Design an OR gate from 2:1 MUX.

5. Design a D and T flip flop using 2:1 multiplexer

6. Implement the function f(A,B,C)= Σm (0,1,3,5,7) by using multiplexer.

DEPT. OF ECE @ MLRITM Page 36

Modelling of an Edge triggered and Level triggered FFs : D, SR,

JK

EXPT. NO : 08

DATE:

AIM: To write HDL codes for SR, JK, D, T flip flops and verify its functionality.

RESOURCES

PC installed with Xilinx tool

PROGRAM LOGIC

Each flip-flop stores a single bit of data, which is emitted through the Q output

on the output section side. Normally, the value can be controlled via the inputs

to the input side. In particular, the value changes when the clock input, marked

by a triangle on each flip-flop, rises from 0 to 1 (or otherwise as configured);

on this rising edge, the value changes according to the tables below.

Table 7.1 Truth tables of D, T, SR, JK flip flops

J K Flip Flop

S R Flip Flop

D

F

l

DEPT. OF ECE @ MLRITM Page 37

ip Flop.

T Flip Flop

Another way of describing the different behavior of the flip-flops is in English text.

D Flip-Flop: When the clock triggers, the value remembered by the flip-flop becomes the

value of the D input (Data) at that instant.

T Flip-Flop: When the clock triggers, the value remembered by the flip-flop either toggles

or remains the same depending on whether the T input (Toggle) is 1 or 0.

J-K Flip-Flop: When the clock triggers, the value remembered by the flip-flop toggles if

the J and K inputs are both 1, remains the same if they are both 0; if they are different,

then the value becomes 1 if the J (Jump) input is 1 and 0 if the K (Kill) input is 1.

S-R Flip-Flop: When the clock triggers, the value remembered by the flip-flop remains

unchanged if R and S are both 0, becomes 0 if the R input (Reset) is 1, and becomes 1 if the

S input (Set) is 1. The behavior in unspecified if both inputs are 1.

PROCEDURE

DEPT. OF ECE @ MLRITM Page 38

 Create a module with required number of variables and mention it’s input/output.

 Write the description of the flip flops using behavioral model

 Create another module referred as test bench to verify the functionality.

 Follow the steps required to simulate the design and compare the obtained output with

the required one.

CODE

//SR flipflop

module p14(s,r,clk,q,qb);

input s,r,clk;

output q,qb; reg

q,qb; reg [1:0]sr;

wire qp=1'b0;

always@(posedge clk) begin

sr={s,r};

begin case

(sr)

2'd0:q=qp;

2'd1:q=1'b0;

2'd2:q=1'b1;

2'd3:q=1'bX;

endcase end

qb=~q; end

endmodule

//JK flipflop

module p15(j,k,clk,q,qb);

input j,k,clk;

output q,qb; reg

q,qb; reg [1:0]jk;

wire qp=1'b0;

always@(posedge clk) begin

DEPT. OF ECE @ MLRITM Page 39

jk={j,k};

begin case (jk)

2'd0:q=qp;

2'd1:q=1'b0;

2'd2:q=1'b1;

2'd3:q=~q; endcase

end qb=~q; end

endmodule

//D flipflop

module p16(q,din,clk);

output q;

reg q; input din

; wire din ;

input clk ;

always @ (posedge (clk))

begin q = din ;

end endmodule

//T flipflop

module p17(q,t,clk);

output q;

reg q; input t ;

input clk ;

always @ (posedge (clk))

begin

q = ~t; end

endmodule

PRE LAB QUESTIONS

DEPT. OF ECE @ MLRITM Page 40

1 Distinguish between latch and edge triggered flip-flop?

2 What is the cause for the race around phenomenon in a J - K flip-flop?

3 What is meant by triggering of a flip-flop?

4 What do you mean by clock skew?

5 What is master-slave flip-flop?

LAB ASSIGNMENT

6 Convert a given J-K flip-flop in to a D flip-flop using

additional logic if necessary?

7 Convert a given J-K flip-flop in to a T flip-flop using

additional logic if necessary?

8 Convert a given D flip-flop in to a T flip-flop using additional logic if

necessary?

9 Implement an asynchronous reset JK FF.

POST LAB QUESTIONS

10 What is use of characteristic and excitation table?

11 How is a JK flip flop made to toggle?

12 Differentiate between combinational and sequential circuits.

DEPT. OF ECE @ MLRITM Page 41

Design of 4-bit binary, BCD counters (synchronous/

asynchronous reset) or any

sequence counter

EXPT. NO : 9

DATE:

AIM:To write HDL codes for the following counters.

RESOURCES

Binary counter

BCD counter (Synchronous reset and asynchronous reset)

PC installed with CAEDENCE tool

PROGRAM LOGIC

Counter is a sequential circuit. A digital circuit which is used for counting pulses is known

as counter. Counter is the widest application of flip-flops. It is a group of flip- flops with a

clock signal applied. Counters are of two types.

Asynchronous or ripple counters.

Synchronous counters.

Asynchronous counters are called as ripple counters, the first flip-flop is clocked by the

external clock pulse and then each successive flip-flop is clocked by the output of the

preceding flip-flop. The term asynchronous refers to events that do not have a fixed time

relationship with each other. An asynchronous counter is one in which the flip-flops within

the counter do not change states at exactly the same time because they do not have a

common clock pulse

In synchronous counters, the clock inputs of all the flip-flops are connected together and

are triggered by the input pulses. Thus, all the flip-flops change state simultaneously (in

parallel).

A counter is a register capable of counting the number of clock pulses arriving at its clock input. Count

represents the number clock pulses arrived. A specified sequence of states appears as the counter output. The

name counter is generally used for clocked sequential circuit whose state diagram contains a single cycle. The

modulus of a counter is the number of states in the cycle. A counter with m states is called a modulo-m counter

or divide-by-m counter. A counter with a non-power-of-2 modulus has extra states that are not used in normal

DEPT. OF ECE @ MLRITM Page 42

operation. There are two types of counters, synchronous and asynchronous. In synchronous counter, the

common clock is connected to all the flip-flops and thus they are clocked simultaneously.

Fig. 9.1 General structure of a counter’s state diagram – a single cycle

Asynchronous Decade Counters

The modulus is the number of unique states through which the counter will sequence. The

maximum possible number of states of a counter is 2nwhere n is the number of flip-

flops. Counters can be designed to have a number of states in their sequence that is less

than the maximum of 2n. This type of sequence is called a truncated sequence. One common

modulus for counters with truncated sequences is 10 (Modules10). A decade counter with a

count sequence of zero (0000) through 9 (1001) is a BCD decade counter because its 10-state

sequence produces the BCD code. To obtain a truncated sequence, it is necessary to force the

counter to recycle before going through all of its possible states. A decade counter requires 4flip-

flops. One way to make the counter recycle after the count of 9 (1001) is to decode count 10

(1010) with a NAND gate and connect the output of the NAND gate to the clear (CLR)

inputs of the flip-flops, as shown in Figure 9.1

Figure 9.2 Asynchronous Decade Counter

DEPT. OF ECE @ MLRITM Page 43

Synchronous Decade Counters

Figure 9.3 Asynchronous Decade Counter

It can be seen from Figure 8.2, that the external clock pulses (pulses to be counted) are fed

directly to each of the J-K flip-flops in the counter chain and that both the J and K inputs

are all tied together in toggle mode, but only in the first flip-flop, flip- flop FFA (LSB) are

they connected HIGH, logic “1” allowing the flip-flop to toggle on every clock pulse. Then

the synchronous counter follows a predetermined sequence of states in response to the

common clock signal, advancing one state for each pulse.

The J and K inputs of flip-flop FFB are connected directly to the output QA of flip- flop

FFA, but the J and K inputs of flip-flops FFC and FFD are driven from separate AND

gates which are also supplied with signals from the input and output of the previous stage.

These additional AND gates generate the required logic for the JK inputs of the next stage.

If we enable each JK flip-flop to toggle based on whether or not all preceding flip- flop

outputs (Q) are “HIGH” we can obtain the same counting sequence as with the

asynchronous circuit but without the ripple effect, since each flip-flop in this circuit will be

clocked at exactly the same time.

PROCEDURE

1. Create a module with required number of variables and mention it’s input/output.

2. Write the description of the counter to count required number of states and to

satisfy its conditions.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output with

the required one.

DEPT. OF ECE @ MLRITM Page 44

CODE

// binary counter

module p18(clk,count);

output [3:0] count ;
reg [3:0] count ; input

clk ;

wire clk ;

initial count = 0;
always @ (posedge (clk))
begin

count <= count + 1; end

endmodule

//BCD counter

module p19(clk ,reset ,dout); output

[3:0] dout ;
reg [3:0] dout ; input

clk ;

wire clk ; input

reset ; wire reset ;

initial dout = 0 ;

always @ (posedge (clk))
begin

if (reset) dout <= 0; else if

(dout<=9) begin

dout <= dout + 1; end

else if (dout==9) begin

dout <= 0; end

end endmodule

PRE LAB QUESTIONS

1. How many number of flip-flops required in a decade counter?

2. How many number of flip-flops required in a Mod – N Counter?

3. What is the difference between synchronous and asynchronous counters?

4. An n stage ripple counter can count up to .

LAB ASSIGNMENT

Design and implement a synchronous 3 – bit up/down

counter using J-K flip- flops.

Implement a ring counter.

Implement a Johnson counter.

DEPT. OF ECE @ MLRITM Page 45

Design a 4-bit ripple counter and verify its functionality.

POST LAB QUESTIONS

What is an asynchronous counter?

How is it different from a synchronous counter?

What are the advantages of synchronous counters?

Design mod-5 synchronous counter using T FF.

What is a decade counter?

For how many clock pulses the final output of a modulus 8 counter occur?

How the up counter can be made to work as down counter?

DEPT. OF ECE @ MLRITM Page 46

Design of a N- bit Register of Serial- in Serial –out, Serial in parallel

out, Parallel in Serial out and Parallel in Parallel Out using different

FFs.

EXPT. NO : 11

DATE:

AIM: Design and simulate the HDL code for universal shift register.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

Universal Shift Register is a register which can be configured to load and/or retrieve the

data in any mode (either serial or parallel) by shifting it either towards right or towards left.

In other words, a combined design of unidirectional (either right- or left- shift of data bits

as in case of SISO, SIPO, PISO, PIPO) and bidirectional shift register along with parallel

load provision is referred to as universal shift register.

Figure 10.1 N-Bit Universal Shift register

The working of this shift register is explained by the Table 10.1. The corresponding truth table and the wave

forms are given by Table 10.2.

DEPT. OF ECE @ MLRITM Page 47

Table 9.1 Functional table for n-bit universal shift register

Table 9.2 Truth table for n-bit universal shift register

PROCEDURE

1. Create a module with required number of variables and mention it’s input/output.

2. Write the description of the universal shift register.

3. Create another module referred as test bench to verify the functionality.

4. Follow the steps required to simulate the design and compare the obtained output with

DEPT. OF ECE @ MLRITM Page 48

the required one.

CODE

//universal shift register

module p20(op,in,s,MSB_in,LSB_in,clk); input
[3:0]in;

input [1:0]s;

input MSB_in, LSB_in,clk; output
[3:0]op;

reg [3:0]op;
always @(posedge clk) case
(s)

2'b00: op <= op;

2'b01: op <= {MSB_in, op[3:1]};

2'b10: op <= {op[2:0], LSB_in};

2'b11: op <= in;

endcase endmodule

PRE LAB QUESTIONS

 What is a register

 What is a shift register?

 Mention the various shift operations.

 What is the difference between logical shift and arithmetic shift?

LAB ASSIGNMENT

9. Design a shift right register.

10. Design a shift left register.

11. Design a circular shift right register using JK flip flop.

12. Design a circular left right register using JK flip flop.

POST LAB QUESTIONS

13. Write a HDL code to load the data parallel in universal shift register.

14. Write a HDL code to load the data serial in universal shift register.

15. Write a HDL code to perform serial in parallel out (SIPO) operation in universal shift

register.

16. Write a HDL code to perform serial in serial out (SISO) operation in universal shift

register.

17. Write a HDL code to perform parallel in serial out (PISO) operation in universal shift

register.

18. Write a HDL code to perform parallel in parallel out (SISO) operation in

universal shift register.

DEPT. OF ECE @ MLRITM Page 49

Design of Sequence Detector (Finite State Machine- Mealy and

Moore Machines).

EXPT. NO : 11

DATE:

AIM:To perform the design flow to generate state machines in Verilog code to detect the given sequence of

bits.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC

As an illustrative example a sequence detector for bit sequence ‘1011’ is described.

Every clock-cycle a value will be sampled, if the sequence ‘1011’ is detected a ‘1’ will

be produced at the output for 1 clock-cycle. There are two methods to design state

machines, first is Mealy and second is Moore style. We will give you an example for

both styles.

Following is the behavior description of the sequencer for a Mealy style

implementation and the state diagram is shown in figure 11.1:

Figure 11.1: Mealy State Machine for Detecting a Sequence of ‘1011’

 When in initial state (S0) the machine gets the input of ‘1’ it jumps to the next state

with the output equal to ’0’. If the input is ‘0’ it stays in the same state.

 When in 2nd state (S1) the machine gets an input of ‘0’ it jumps to the 3rd state with

the output equal to ‘0’. If it gets an input of ‘1’ it stays in the same state.

When in the 3rd state (S2) the machine gets an input of ‘1’ it jumps to the 4th state with the output equal

to ‘0’. If the input received is ‘0’ it goes back to the initial state.

When in the 4th state (S3) the machine gets an input of ‘1’ it jumps back to the 2ndstate, with the output equal to

DEPT. OF ECE @ MLRITM Page 50

‘1’. If the input received is ‘0’ it goes back to the 3rd state.

Following is the behavior description of the sequencer for a Moore style

implementation and the state diagram is shown in figure 11.2:

Figure 11.2: Moore State Machine for Detecting a Sequence of ‘1011’

 In initial state (S0) the output of the detector is ‘0’. When machine gets the input

of‘1’ it jumps to the next state. If the input is ‘0’ it stays in the same state.

 In 2nd state (S1) the output of the detector is ‘0’. When machine gets an input of

‘0’it jumps to the 3rd state. If it gets an input of ‘1’ it stays in the same state.

 In the 3rd state (S2) the output of the detector is ‘0’. When machine gets an input

of‘1’ it jumps to the 4th state. If the input received is ‘0’ it goes back to the initial

state.

 In the 4th state (S3) the output of the detector is ‘0’. When machine gets an input

of‘1’ it jumps to the 5th state. If the input received is ‘0’ it goes back to the 3rd state.

 In the 5th state the output of the detector is ‘1’. When machine gets an input of ‘0’it

jumps to the 3rd state, otherwise it jumps to the 2nd state.

After designing the state machines the models have to be transformed into Verilog code

describing the architecture. Therefore, it is helpful to get an understanding about the

building blocks. Figure 11.3 shows the entity for the sequence detector to be

developed. The two blocks inside, i.e., the Combinational and the register block is

building out of the two processes used within the architecture in Verilog. The

combinational block decides the next state of the FSM according to the current state

and the input as well as drives the output according to the state (and input for Mealy

implementation). The register block saves the current state of the FSM. This structure

can be used to write the Verilog code.

DEPT. OF ECE @ MLRITM Page 51

Figure 11.3: Block diagram clarifying the basic building blocks of an FSM

PROCEDURE

1. Create a module with required number of variables and mention it’s

input/output.

2. Write the description of the sequence detector FSM in behavioral model.

3. Create another module referred as test bench to verify the functionality.

Follow the steps required to simulate the design and compare the obtained output with

the required one.

CODE

// sequence detector

module p22(clk, rst, inp, outp); input

clk, rst, inp;

output outp;

reg [1:0] state;reg outp; always

@(posedge clk, rst) begin

if(rst)
state <= 2'b00; else

begin

case({state,inp})

3'b000: begin state <=

2'b00; end

3'b001: begin state
<= 2'b01; end
3'b010: begin state

DEPT. OF ECE @ MLRITM Page 52

<= 2'b10; end

3'b011: begin state

<= 2'b01; end

3'b100: begin state

<= 2'b10; end

3'b101: begin state

<= 2'b11; end

3'b110: begin state

<= 2'b10; end

3'b111: begin state

<= 2'b01; end

endcase end

assign outp = (({state,inp})==3'b111)? 1'b1 : 1'b0; end

endmodule

PRE LAB QUESTIONS

1. Design a FSM to detect the sequence ‘1010’.

2. Design a state flow diagram for the sequence detector FSM ‘10010’.

3. Design the state table for the sequence detector FSM ‘10010’

4. What is a sequential circuit?

LAB ASSIGNMENT

5. Design a FSM to detect the sequence ‘1011’.

6. Design a state flow diagram for the sequence detector FSM ‘1011.

7. Design the state table for the sequence detector FSM ‘1011’.

8. Obtain the Boolean logic expressions for the next states from the obtained state

table.

9. Observe the RTL schematic of the designed FSM.

POST LAB QUESTIONS

10. Design a state flow diagram for the sequence detector FSM ‘1010101.

11. Design a ‘1010101’ sequence detector using Verilog HDL coding.

DEPT. OF ECE @ MLRITM Page 53

Design of 4- Bit Multiplier, Divider EXPT. NO : 12

DATE:

AIM: 4 X 4 Multiplier Combinational Multiplier

A 4 X 4 Array Multiplier is multiplier which takes two array of 4 bit each (a binary 4 bit number) and multiplies

them to generate a 8 bit output.

RESOURCES

PC installed with CADENCE tool

PROGRAM LOGIC:

4 X 4 array Multiplier Verilog Code (Using Full Adder)

CODE:

module multiplier_4_x_4(product,inp1,inp2);

output [7:0]product;

input [3:0]inp1;

input [3:0]inp2;

assign product[0]=(inp1[0]&inp2[0]);

wire x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17;

HA HA1(product[1],x1,(inp1[1]&inp2[0]),(inp1[0]&inp2[1]));

FA FA1(x2,x3,inp1[1]&inp2[1],(inp1[0]&inp2[2]),x1);
FA FA2(x4,x5,(inp1[1]&inp2[2]),(inp1[0]&inp2[3]),x3);

HA HA2(x6,x7,(inp1[1]&inp2[3]),x5);

HA HA3(product[2],x15,x2,(inp1[2]&inp2[0]));

FA FA5(x14,x16,x4,(inp1[2]&inp2[1]),x15);

DEPT. OF ECE @ MLRITM Page 54

FA FA4(x13,x17,x6,(inp1[2]&inp2[2]),x16);

FA FA3(x9,x8,x7,(inp1[2]&inp2[3]),x17);

HA HA4(product[3],x12,x14,(inp1[3]&inp2[0]));

FA FA8(product[4],x11,x13,(inp1[3]&inp2[1]),x12);

FA FA7(product[5],x10,x9,(inp1[3]&inp2[2]),x11);

FA FA6(product[6],product[7],x8,(inp1[3]&inp2[3]),x10);

endmodule

module HA(sout,cout,a,b);

output sout,cout;

input a,b;

assign sout=a^b;

assign cout=(a&b);

endmodule

module FA(sout,cout,a,b,cin);

output sout,cout;

input a,b,cin;

assign sout=(a^b^cin);

assign cout=((a&b)|(a&cin)|(b&cin));

endmodule

DEPT. OF ECE @ MLRITM Page 55

Design of ALU to Perform – ADD, SUB, AND-OR,

1’s and 2’s Compliment

EXPT. NO : 13

DATE:

AIM: To design a model to implement 8-bit ALU functionality

RESOURCES

PC installed with Xilinx tool

PROGRAM LOGIC

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that performs

arithmetic and bitwise operations on integer binary numbers. This is in contrast to a

floating-point unit (FPU), which operates on floating point numbers. An ALU is a

fundamental building block of many types of computing circuits, including the central

processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). A single

CPU, FPU or GPU may contain multiple ALUs.

Figure 13.1 Arithmetic logic unit block diagram

The inputs to an ALU are the data to be operated on, called operands, and a code (opcode)

indicating the operation to be performed and, optionally, status information from a previous

operation; the ALU's output is the result of the performed operation. In many designs, the

ALU also exchanges additional information with a status register, which relates to the

result of the current or previous operations

A number of basic arithmetic and bitwise logic functions are commonly supported by ALUs. Basic, general

purpose ALUs typically includes these operations in their repertoires:

1. Arithmetic operations

2. Bitwise logical operations

3. Bit shift operations

In this lab, students have to design an 8-bit ALU to implement the following operations:

DEPT. OF ECE @ MLRITM Page 56

Table 1: ALU Instructions

Control Instruction Operation

000 Add Ouput<= A+B+Cin (Cout is carry)

001 Sub Output <= A-B-C (Cou is barrow)

010 Or Output <= A or B

011 And Output <= A and B

100 Shl Output <= A[7:0] & ‘0’

101 Shr Output <= ‘0’ & A[7:1]

110 Rol Output <= A[2:0] & A[7]

111 Ror Output <= A[0] & A[7:1]

Table 1 also illustrates the encoding of the control input The 4

- bit ALU has the following inputs:

A: 8-bit input

B: 8-bit input

Cin: 1-bit input

Output: 8-bit output

Cout: 1-bit output

Control: 3-bit control input

The following points should be taken care of:

Use a case statement (or a similar ‘combinational’

statement) that checks the input combination of “Code” and

acts on A, B, and Cin as described in Table1.

The above circuit is completely combinational. The output

should change as soon as the code combination or any of

the input changes.

You can use arithmetic and logical operators to realize your design.

PROCEDURE

CODE

Create a module with required number of variables and mention it’s
input/output.

Write the description of the ALU by using case statements.

Create another module referred as test bench to verify the functionality.

Follow the steps required to simulate the design and compare the

obtained output with the required one.

//8 bit ALU

module p13(z,a,b,sel); input

[7:0]a,b;

input [3:0]sel;
output [7:0]z;

reg [7:0]z;

DEPT. OF ECE @ MLRITM Page 57

always@(sel,a,b)
begin

case(sel) 4'b0000:
z=a+b;

4'b0001: z=a-b;

4'b0010: z=b-1;

4'b0011: z=a*b;

4'b0100: z=a&&b;

4'b0101: z=a||b;

4'b0110: z=!a;
4'b0111: z=~a;

4'b1000: z=a&b;
4'b1001: z=a|b;

4'b1010: z=a^b;

4'b1011: z=a<<1;

4'b1100: z=a>>1;

4'b1101: z=a+1;

4'b1110: z=a-1;
endcase end
endmodule

PRE LAB QUESTIONS

1. State the basic units of the computer. Name the subunits that make up the CPU, and

give the function of each of the units.

2. Give the description of computer architecture.

3. What are arithmetic operations

4. What are bitwise logical operations

5. What are bit shift operations

LAB ASSIGNMENT
1. Design the 4-bit ALU

2. Write a HDL code to implement basic arithmetic operations using ALU.

POST LAB QUESTIONS
1. Write a HDL code to implement bitwise logical operations using ALU.

2. Write a HDL code to implement bit shift operations using ALU.

DEPT. OF ECE @ MLRITM Page 58

Implementing the above designs on FPGA kits EXPT. NO : 14

DATE:

AIM:Implementing the above designs on FPGA kits

RESOURCES:

PC Installed with CADENCE tool.

	INDEX
	PREFACE
	ACKNOWLEDGEMENT
	GENERAL INSTRUCTIONS
	SAFETY PRECAUTIONS
	INSTITUTION VISION AND MISSION
	VISION
	MISSION
	DEPARTMENT VISION, MISSION, PROGRAMME EDUCATIONAL OBJECTIVES AND SPECIFIC OUTCOMES
	PROGRAMME EDUCATIONAL OBJECTIVES
	DATA FLOW MODEL:
	RESOURCES
	PROGRAM LOGIC
	PROCEDURE
	CODE
	PROGRAM LOGIC (1)
	PROCEDURE (1)
	PRE LAB QUESTIONS
	LAB ASSIGNMENT
	POST LAB QUESTIONS

	AIM:
	PROGRAM LOGIC
	Program logic for Decoder

	PRE LAB QUESTIONS
	RESOURCES
	Program logic for Encoder

	PROCEDURE
	CODE
	PRE LAB QUESTIONS (1)
	LAB ASSIGNMENT
	POST LAB QUESTIONS
	RESOURCES (1)
	PROGRAM LOGIC (1)
	PROCEDURE (1)
	CODE (1)
	PRE LAB QUESTIONS (2)
	LAB ASSIGNMENT (1)
	POST LAB QUESTIONS (1)
	RESOURCES (2)
	PROGRAM LOGIC (2)
	Binary to gray code converter logic
	Gray to binary code converter logic

	PROCEDURE (2)
	CODE (2)
	PRE LAB QUESTIONS (3)
	LAB ASSIGNMENT (2)
	POST LAB QUESTIONS (2)
	RESOURCES (3)
	PROGRAM LOGIC (3)
	PROCEDURE (3)
	PRE LAB QUESTIONS (4)
	LAB ASSIGNMENT (3)
	POST LAB QUESTIONS (3)
	RESOURCES (4)
	PROGRAM LOGIC (4)

	Table 7.1 Truth tables of D, T, SR, JK flip flops J K Flip Flop
	PROCEDURE
	CODE
	PRE LAB QUESTIONS
	LAB ASSIGNMENT
	POST LAB QUESTIONS
	RESOURCES
	PROGRAM LOGIC
	Asynchronous Decade Counters
	Synchronous Decade Counters

	PROCEDURE (1)
	CODE (1)
	PRE LAB QUESTIONS (1)
	LAB ASSIGNMENT (1)
	POST LAB QUESTIONS (1)
	RESOURCES (1)
	PROGRAM LOGIC (1)
	PROCEDURE (2)
	CODE (2)
	PRE LAB QUESTIONS (2)
	LAB ASSIGNMENT (2)
	POST LAB QUESTIONS (2)
	RESOURCES (2)
	PROGRAM LOGIC (2)
	PROCEDURE (3)
	CODE (3)
	POST LAB QUESTIONS (3)
	RESOURCES (3)
	RESOURCES (4)
	PROGRAM LOGIC (3)
	PROCEDURE (4)
	PRE LAB QUESTIONS (3)
	LAB ASSIGNMENT (3)
	POST LAB QUESTIONS (4)

