

DEPARTMENT OF ELECTRONICS & COMMUNICATION

 ENGINEERING

(2415522)

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

M.TECH -I YEAR - I SEMESTER (ECE)

M. R24 (MLRS) REGULATION

A.Y : 2024-2025

S.NO CONTENTS Page No

1 CERTIFICATE i

2 PREFACE ii

3 ACKNOWLEDGEMENT iii

4 GENERAL INSTRUCTIONS iv

5 SAFETY PRECAUTIONS v

6 INSTITUTE VISION AND MISSION vi

7 DEPARTMENT VISION MISSION, PROGRAMME EDUCATIONAL OBJECTIVES vii

8 PROGRAMME OUTCOMES viii

9 COURSE STRUCTURE, OBJECTIVES & OUTCOMES ix

10 EXPERIMENTS xii

11 Introduction about Lab
1

12 Lab Code. 2-8

13
Write a program to
a) Read inp uts from Switches.

b) To make LEDs blink

9-18

14 Write a program to interface a switch and buzzer to two different pins of a port such that the

buzzer should as long as the switch is pressed.

19-20

15
 Write a program for serial Communication.

21-25

16 .Write a program for encryption /decryption. 26-31

17 Develop necessary interfacing circuit to read data from a sensor and process using the 8051

boards.The data to be displayed on a PC monitor
32-35

18 Write a program to trasmit a message from Microcontroller to PC serially using RS232.

19 Sort RTOs on to 89CS1 board and verify 36-43

20 Simulate on elevator movement using RTO’s on 89CSI board 44-53

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

2

SYSTEM DESIGN WITH EMBEDDED

LINUX

Lab Manual for the Academic Year 2024-25

COURSECODE : 2415522

REGULATIONS : MLRS-R24

CLASS : I SEMESTER

BRANCH : M.TECH (Embedded Systems)

INSTRUCTOR : Dr. N. SRINIVAS

PROGRAMMERS : R. S. PILLAI

LAB I/C HOD - ECE

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

3

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

i

CERTIFICATE

This is to certify that this manual is a bonafide record of practical work in the System

Design with embedded Linux lab in I Semester of I -year M. Tech Sem I (ECE) Programme

during the academic year 2024-2025. This book is prepared by Dr. N Srinivas (Associate

Professor), Mrs. R Babitha (Assistant Professor), Mrs. B Manjula (Assistant Professor),

Department of Electronics and Communication Engineering.

LAB I/C Head of the Department

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

ii

PREFACE

It is one of the core areas of ECE and constitutes the largest applications in use today.

Communication has entered into every part of today’s world. This laboratory is intended to

make students understand the use of different System Design with Embedded Linux a n d

is designed to help students understand the basic principles of design techniques as

well as giving them the insight on design, simulation and hardware implementation of

circuits. The main aim is to provide hands‐on experience to the students so that they are able

to put theoretical concepts to practice. The content of this course consists of two parts,

‘simulation’ and ‘hardwired’. . Students will carry out design experiments as a part of the

experiments list provided in this lab manual. Students will be given a specific design

problem, which after completion they will verify using the simulation software or

hardwired implementation.

By,

Dr. N Srinivas (Associate Professor),),

Mrs. R Babitha (Assistant Professor),

Mrs. B Manjula (Assistant Professor),

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

iii

ACKNOWLEDGEMENT

It was really a good experience, working with Systems Design with Embedded Linux

Laboratory. First, we would like to thank Dr. N. Srinivas, Assoc. Professor, HOD of Department

of Electronics and Communication Engineering, Marri Laxman Reddy Institute of technology &

Management for his concern and giving the technical support in preparing the document.

We are deeply indebted and gratefully acknowledge the constant support and valuable

patronage of Dr. Ravi Prasad, Dean, Marri Laxman Reddy Institute of technology & Management

for giving us this wonderful opportunity for preparing the Analog and Digital Communications

Laboratory manual.

We express our hearty thanks to Dr.R. Murali Prasad, Principal, Marri Laxman Reddy

Institute of technology & Management, for timely corrections and scholarly guidance.

At last, but not the least I would like to thanks the entire ECE Department faculty those who had

inspired and helped us to achieve our goal.

By,

Dr.N.Srinivas(Associate Professor),

Mrs.R.Babitha(Assistant Professor),

Mrs.B.Manjula(Assistant Professor)

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

iv

GENERAL INSTRUCTIONS

1. Students should report to the concerned labs as per the timetable schedule.

2. Students who turn up late to the labs will in no case be permitted to perform the experiment

scheduled for the day.

3. After completion of the experiment, certification of the concerned staff in-charge in the

observation book is necessary.

4. Students should bring a notebook of about 100 pages and should enter the readings/observations

into the notebook while performing the experiment.

5. The record of observations along with the detailed experimental procedure of the experiment.

6. Performed in the immediate last session should be submitted and certified by the staff member

in-charge.

7. . Not more than one student is permitted to perform the experiment on a setup.

8. When the experiment is completed, students should disconnect the setup made by them, and

should return all the components/instruments taken for the purpose.

9. Any damage of the equipment or burnout of components will be viewed seriously by putting

penalty.

10. Students should be present in the labs for the total scheduled duration.

11. Students are required to prepare thoroughly to perform the experiment before coming to

Laboratory.

12. Procedure sheets/data sheets provided to the student’s should be maintained neatly and to be

returned after the experiment.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

v

SAFETY PRECAUTIONS

1. No horseplay or running is allowed in the labs.

2. No bare feet or open sandals are permitted.

3. Before energizing any equipment, check whether anyone is in a position to be injured by

your actions.

4. Read the appropriate equipment instruction manual sections or consult with your

instructor.

5. Before applying power or connecting unfamiliar equipment or instruments into any

circuits.

6. Position all equipment on benches in a safe and stable manner.

7. Do not make circuit connections by hand while circuits are energized.

8. Dangerous with high voltage and current circuits.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

vi

Vision of the Institute

To be a globally recognized institution that fosters innovation, excellence, and leadership in

education, research, and technology development, empowering students to create sustainable

solutions for the advancement of society.

Mission of the Institute

To foster a transformative learning environment that empowers students to excel in engineering,

innovation, and leadership.

To produce skilled, ethical, and socially responsible engineers who contribute to sustainable

technological advancements and address global challenges.

To shape future leaders through cutting-edge research, industry collaboration, and

community engagement.

Quality Policy

The management is committed in assuring quality service to all its stakeholders, students, parents,

alumni, employees, employers, and the community.

Our commitment and dedication are built into our policy of continual quality improvement by

establishing and implementing mechanisms and modalities ensuring accountability at all levels,

transparency in procedures, and access to information and actions.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

vii

 Department of Electronics and Communication Engineering

Vision of the Department

To provide quality technical education in Electronics and Communication Engineering through

research, innovation, striving for global recognition in specified domain, leadership, and sustainable

societal solutions.

Mission of the Department
 To create a transformative learning environment that empowers students in electronics and

communication engineering, fostering excellence in technical skills and leadership.

 To drive innovation through research, deliver a transformative education grounded in ethical

principles, and nurture the development of professionals

 To cultivate strong industry partnerships, and engaging actively with the community for societal

and technological progress.

Program educational Objectives (PEOs)

PEO 1: Have Successful career in Industry

Graduates will excel in the Electronics and Communication industry with a strong foundation in

technical expertise, continuous learning, and innovation.

PEO 2: Show Excellence in higher studies/Research

Graduates will excel in higher studies and research in Electronics and Communication Engineering

(ECE) through a combination of rigorous academic dedication, cutting-edge innovation, and a deep

understanding of emerging technologies.

PEO 3: Show Good Competency towards Entrepreneurship

Graduates will have to show good competency towards entrepreneurship in the field of Electronics

and Communication Engineering, one must demonstrate an in-depth understanding of emerging

technologies, market trends, and the ability to innovate within this rapidly evolving industry.

Program Specific Outcomes (PSOs)

1. Analyze and design analog & digital circuits or systems for a given specification and function.

2. Implement functional blocks of hardware-software co-designs for signal processing and

communication applications.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

viii

 Department of Electronics and Communication Engineering

Program Outcomes (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,

and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for

the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

ix

Lab Objective:

An embedded system is some combination of computer hardware and

software, either fixed in capability or programmable, that is specifically designed for a

particular kind of application device. Industrial machines, automobiles, medical

equipment, cameras, household appliances, airplanes, vending machines, and toys (as

well as the more obvious cellular phone and PDA) are among the myriad possible

hosts of an embedded system. Embedded systems that are programmable are provided

with a programming interface, and embedded systems programming is a specialized

occupation.

An embedded system is a special-purpose computer system designed to

perform one or a few dedicated functions[1], often with real-time computing

constraints. It is usually embedded as part of a complete device including hardware

and mechanical parts. In contrast, a general-purpose computer, such as a personal

computer, can do many different tasks depending on programming. Embedded

systems have become very important today as they control many of the common

devices we use.

Since the embedded system is dedicated to specific tasks, design engineers can

optimize it, reducing the size and cost of the product, or increasing the reliability and

performance. Some embedded systems are mass-produced, benefiting from

economies of scale.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

x

List of Experiments

S. No Name of the Experiment

1

Write a Program to
a) Read inputs from switches.

b) To make LEDs blink.

2
Write a program to interface a switch and a buzzer to two different pins of a Port such
that the buzzer should sound as long as the switch is pressed.

3 Write a Program for serial communication.

4 Write a Program for encryption / decryption

5
Develop necessary interfacing circuit to read data from a sensor and process using the
801 and 8051 boards. The data to be displayed on a PC monitor.

6
Write a program to transmit a message from Microcontroller to PC serially using
RS232

7 Sort RTOs (mCOS) on to 89CS1 board and Verify.

8 Simulate on elevator movement using RTO’s on 89CSI board.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

1

INTRODUCTION ABOUT LAB

There are 12 systems (Compaq Presario) installed in this Lab.

Their configurations are as follows :

Processor : AMD Athelon ™ 1.67 GHz

RAM : 1 GB

Hard Disk : 40 GB

Mouse : Optical Mouse

Network Interface card : Present

Software

1 All systems are configured in DUAL BOOT mode i.e, Students can boot from

Windows XP or Linux as per their lab requirement.

This is very useful for students because they are familiar with different

Operating Systems so that they can execute their programs in different

programming environments.

2 Each student has a separate login for database access

Oracle 9i client version is installed in all systems. On the server, account for

each student has been created.

This is very useful because students can save their work (scenarios’,

pl/sql programs, data related projects ,etc) in their own accounts. Each student

work is safe and secure from other students.

3 Latest Technologies like DOT NET and J2EE are installed in some

systems. Before submitting their final project, they can start doing mini

project from 2nd year onwards.

4 MASM (Macro Assembler), Keil is installed in all the systems

Students can execute their assembly language programs using MASM.

MASM is very useful students because when they execute their

programs they can see contents of Processor Registers and how each

instruction is being executed in the CPU.

1 Rational Rose Software is installed in some systems

Using this software, students can depict UML diagrams of their

projects.

2 Software installed : C, C++, JDK1.5, MASM, OFFICE-XP, J2EE and

DOT NET, Rational Rose.

3 Systems are provided for students in the 1:1 ratio.

4 Systems are assigned numbers and same system is allotted for students when

they do the lab.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

2

LAB CODE

1. Students should report to the concerned labs as per time table schedule.

2. Students who turn up late to the labs will in no case be permited to do the

program scheduled for the day.

3. After completion of the program , certification of the concerned staff in-

charge in the observation book is necessary.

4. Students should bring a notebook of about 100 pages and should enter the

reading/observations into the notebook while performing the experiment.

5. The record of observations along with the detailed experimental procedure of

the experiment performed in the immediate last session should be submitted

and certified by the staff ember in-charge.

6. The group-wise division made in the beginning should be adhered to and no

mix up student among different groups will be permitted later.

7. The components required pertaining to the experiment should be collected

from stores in-charge after duly filling in the requisition form.

8. When the experiment is completed, students should disconnect the setup made

by them, and should return all the components/instruments taken for the

purpose.

9. Any damage of the equipment or burn-out of components will be viewed

seriously either by putting penalty or by dismissing the total group of students

from the lab for the semester/year.

10. Students should be present in the labs for the total scheduled duration.

11. Students are required to prepare thoroughly to perform the experiment before

coming to Laboratory.

12. Procedure sheets/data sheets provided to the student’s groups should be

maintained neatly and to be returned after the experiment.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

3

Description about ES Concepts:

Embedded systems are designed to do some specific task, rather than be a

general-purpose computer for multiple tasks. Some also have real-time

performance constraints that must be met, for reason such as safety and usability;

others may have low or no performance requirements,allowing the system

hardware to be simplified to reduce costs.

Embedded systems are not always separate devices. Most often they are

physically built-in to the devices they control.

The software written for embedded systems is often called firmware, and is

stored in read-only memory or Flash memory chips rather than a disk drive. It

often runs with limited computer hardware resources: small or no keyboard,

screen, and little memory.

Embedded systems range from no user interface at all — dedicated only to one

task — to full user interfaces similar to desktop operating systems in devices such

as

PDAs.

Simple embedded devices use buttons, LEDs, and small character- or

digit-only displays, often with a simple menu system.

Embedded Systems components:

Introduction to 8051 Microcontroller:
 Microcontroller is a device which integrates number of components of a

microprocessor system onto a single chip. It typically includes:-

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

4

 CPU (Central Processing unit)

 RAM & ROM

 I/O inputs & outputs – Serial & Parallel

 Timers

 Interrupt Controller

By including the features that are specific to the task (Control), Cost is relatively low.

Microcontroller are a ―one chip solutions‖ which drastically reduces parts count and

design costs.

Block Diagram:

8051 Basic Components:

 4K bytes internal ROM

 128 bytes internal RAM

 Four 8-bit I/O ports (P0 - P3).

 Two 16-bit timers/counters

 One serial interface

8051 features:

 4K bytes ROM

 128 bytes RAM

 Four 8-bit I/O ports

 Two 16-bit timers

 Serial interface

 64K external code memory space

 ALU

 Working Registers

 Clock Circuits

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

5

 Timers and Counters

 Serial Data Communication.

8051 CPU Registers:

 A (8-bit Accumulator)

 B (8-bit register for Mul &Div)

 PSW (8-bit Program Status Word)

 SP (8-bit Stack Pointer)

 PC (16-bit Program Counter)

 DPTR (16-bit Data Pointer)

Pin Description of the 8051:

 The 8051 is a 40 pin device, but out of these 40 pins, 32 are used for I/O

 24 of these are dual purpose, i.e. they can operate as I/O or a control line or as part of

address or date bus.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

6

8051 Development Board (P89V51RD2)

On board Peripherals:

1) hex-key pad 2) seven segment display

3) serial peripheral interface (spi) 4) led‘ display

 5) analog to digital converter 6) lm35 temperature sensor

7) digital to analog converter 8) rtc battery

9) eeprom (i2c) 10) rtc
11) lcd display 12) gnd and vcc

13) lcd contrast (potentiometer) 14) p89v51rd2

15) crystal oscillator 16) max232

17) serial port connector 18) stepper motor driver

19) buzzer 20) reset button

21) push button switches 22) slide switches

23) ps/2 connector 24) relay output connector

25) power supply slide switch 26) power jack

27) 7805 voltage regulator 28) bridge rectifier

29) relay

Overview:

The UTS-MC-KIT-M7.3 has got P89V51RD2 microcontroller which has got

64KiloBytes of on chip Flash memory and 1 KiloBytes of RAM. The kit is has got

on board 11.0592MHz crystal for generating the on chip clock of 11.0592MHz.

A Key feature of the board is it has got so many interfaces, with different on

board peripherals and has got expansion capability to add any further sensor and

peripherals in future. This prototype board is very easy to use for 8051

architecture. This board is interfaced with LED‘s, 7 SEG display, LCD display,

Pushbutton. This Board can also be interfaced with PC via serial communication

and can be viewed through hyper terminal. The LCD display can be connected

easily through connectors. No soldering work /No lose contact/ just plug in the

berg connectors.

The board has got on chip peripherals like on board 32 KB bytes of RAM,

Eight Light Emitting Diodes, four Push Buttons, Four Seven Segment Displays,

16X2 Liquid Crystal Character Display(LCD), Analog to Digital Converter,

LM35 Temperature sensor, SPI based ADC, Hex Keypad, Buzzer relay, steeper

motor driver interface, Real time clock, RS-232 serial interface.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

7

Component Description:

Microcontroller

The P89V51RD2 device contains a non-volatile 64KB Flash program

memory.

In-System Programming (ISP) allows the user to download new code while

the microcontroller sits in the application. A default serial loader (boot loader)

p rogram in ROM allows serial In-System programming of the Flash memory via

the UART without

the need for a loader in the Flash code.

This device executes one machine cycle in 6 clock cycles, hence providing

twice the speed of a conventional 80C51. An OTP configuration bit lets the user

select conventional 12 clock timing if desired.

This device is a Single-Chip 8-Bit Micro controller manufactured in advanced

CMOS process and is a derivative of the 80C51 micro controller family. The

instruction set is 100% compatible with the 80C51 instruction set.

The device also has four 8-bit I/O ports, three 16-bit timer/event counters, a

multisource, and four- priority-level, nested interrupt structure, an enhanced

UART and on-chip oscillator and timing circuits.

The added features of the P89V51RD2 makes it a powerful micro controller

for applications that require pulse width modulation, high-speed I/O and up/down

counting capabilities such as motor control.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

8

Experimental Procedure for Keil4 IDE

The RVision IDE is, for most developers, the easiest way to create embedded system

programs.

This chapter describes commonly used RVision features and explains how to use

them.

RVision is a Windows application that encapsulates the Keil microcontroller

development tools as well as several third-party utilities. RVision provides everything

you need to start creating embedded programs quickly. RVision includes an advanced

editor, project manager, and make utility, which work together to ease your

development efforts, decreases the learning curve, and helps you to get started with

creating embedded applications quickly.

There are several tasks involved in creating a new embedded project:

 Creating a Project File

 Using the Project Windows

 Creating Source Files

 Adding Source Files to the Project

 Using Targets, Groups, and Files

 Setting Target Options, Groups Options, and File Options

 Configuring the Startup Code

 Building the Project

 Creating a HEX File

The below section provides a step-by-step tutorial that shows you how to create an

embedded project using the RVision IDE.

Downloading the hex file to the target using Flash magic Software:

Open the Flash Magic tool for downloading into the Microcontroller Board. Click on

Device menu select option you will be popped up with a window named choose

device. Under choose device options select 8051 and click on Ok button to open flash

magic tool to download the hex file in to the MC

Terminal Software for Check the Serial port Data receiving from

Microcontroller to PC:

Terminal is a simple serial port (COM) terminal emulation program. It can be used for

communication with different devices such as modems, routers, embedded

microcontroller systems, GSM phones, GPS modules... It is very useful debugging

tool for serial communication applications.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

9

1. Write a Program to

a) Read inputs from switches.

b) To make LEDs blink.

Aim:

To Read inputs from Switches

Program

8-Way DIP Switch

This is another simple interface, 8to the port lines, and for some control application

i) The Development board has one no. of 8used to provide digital inputs to the

microcontroller’s ports.

ii) User can change the level of digital inputs whatever they want, either high

or low by simply selecting the jumper+5V, in order to should be used.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

10

/*---

Example 1 : Read Switch status & displayed in LED’s

Description : Depends upon the dip switch position

the corresponding leds are on (or) off

- --- */

FLOW Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

11

CODE:

#include <reg51.h> //Define 8051 Registers

#define LED P0 //Assign led to P0

#define SWITCH P1 //Assign switch to P1

/************************** Main

Function*****************************/

void main(void)

{
SWITCH = 0xff; //Initialize the switch as input port

LED = 0x00; //Initialize the led as output port

while(1)

{

LED = ~SWITCH;

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

12

/*---

Example 2 : Read Switch status & scrolling the LED’s

Description : Depends upon the dip switch position

the led will be scrolling

- --- */

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

13

Code:

#include<reg51.h> //Define 8051 Registers

#define Led P0 //Assign led as P0

#define Switch P1 //Assign switch as P1

void DelayMs(unsigned int k); //Delay function

void scrollLeft();

void scrollRight();

int loop,port;

/************************** Main

Function*****************************/

void main(void)

{
Switch =0xff; //Intialize the port1

Led =0x00; //Intialize the port0

while(1)

{

if(Switch ==0xfe)

{ scrollLeft(); //scrollLeft function

}

else if(Switch ==0xfd)

{ scrollRight(); // scrollRight function

}

else

{ Led =0x00;

}

}

}

/*************************** Delay for 1 msec*************************/

void DelayMs(unsigned int k)
{

unsigned int i,ms;

for(ms=0;ms<=k;ms++)

{ for(i=0;i<=114;i++); }

}

/*************************** LED Scroll Left *************************/

void scrollLeft()
{

port=1;

for(loop=0;loop<8;loop++)

{

Led =port;

port=port*2;

DelayMs(500); //Delay for 500ms

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

14

/*************************** LED Scroll Left *************************/

void scrollRight()
{

port=128;

for(loop=0;loop<8;loop++)

{

Led =port;

port=port/2;

DelayMs(500); //Delay for 500ms

}

}

Execution:

Note: After loading corresponding Examples Hex file located in “OUT” Folder to

The microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

15

b) To make LEDs blink

*/

Example 1 : Program to Blink LED at P0.0

Description : Connect a LED at a port pin and make it

flash at predefined intervals.

*/

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

16

Code:

#include<reg51.h> //Define 8051 Registers

void DelayMs(unsigned int a); //Delay function

sbit led =P0^0; //Set bit P0^0 for led

/*---

--*/

// Main Program

void main()

{

P0=0x00; //Port0 as output port

while(1) //Loop forever

{

led = 1; //Set the led to high

DelayMs(500); //Delay for 500ms

led = 0; //Set the led to low

DelayMs(500); //Delay for 500ms

}

}

/***************************

// Delay for 1 msec

****************************/

void DelayMs(unsigned int k)

{

unsigned int i,ms;

for(ms=0;ms<=k;ms++)

{

for(i=0;i<=114;i++);

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

17

/*---

Example 2 : Program to Blink LED at Port P0

Description : Connect a LED at a port pins and make it

flash at predefined intervals.

- --- */

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

18

Code:

#include<reg51.h> //Define 8051 Registers

#define led P0 //Define P0 for Led

void DelayMs(unsigned int a); //Delay function

/*---

// Main Program

- --- */

void main()

{

P0=0x00; //Port0 as output port

while(1) //Loop forever

{

led = 0xff; //Set the all led to high

DelayMs(500); //Delay for 500ms

led = 0x00; //Set the all led to low

DelayMs(500); //Delay for 500ms

}

}

/***************************

// Delay for 1 msec

****************************/

void DelayMs(unsigned int k)

{

unsigned int i,ms;

for(ms=0;ms<=k;ms++)

{

for(i=0;i<=114;i++);

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

19

2. Write a Embedded C Program to interface a switch and a buzzer to two different

pins of a port such that the buzzer should sound as long as the switch is pressed.

Equipment Requirements:

Hardware Requirements:

1. 89V51RD2 Development board
2. A serial 9 pin cable wired one to one from female connector to male connector

3. PC with serial port

4. 9V adaptor

5. Connecting jumper and Connecting Wires.

Software Rquirements :

1. Keil evaluation software
2. Flash Magic tool.

Interfacing Switch & Buzzer with 8051:

Source code:

/*Program to interface a switch and a buzzer to two different pins of a Port such that

the buzzer should sound as long as the switch is pressed.

*/ #include // special function register declarations for the intended 8051 derivative

sbit SW1 = P1^4;

sbit BUZZER = P3^6;

void main (void)

{

BUZZER = 0;

while(1)

{

if(SW1 == 0)

{

BUZZER = 1;

}

else

BUZZER = 0;

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

20

}

}

Flow Chart:

Hardware configuration:

1. Connect a single pin wire from PORT 1.4 to any switch available on board.

2. Place the jumper at jp6 jumper position to connect the buzzer onboard to the

controller.

3. Turn ON and OFF or reset the board, to view the output.

Results/Output verification:

After programming the code into the microcontroller just reset the

microcontroller.You can listen to the buzzer buzzing.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

21

3. Write a Program for serial communication.

Aim :To write a Program for serial communication

Program

1) RS-232 communication enables point in data acquisition applications, for the

transfer of data between the microcontroller and a PC.

patible with

those of RS-232, a level transition buffer such as MAX232 be used.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

22

/* -- */

/* Example 1 : Program to send data serially through serial port */

/* */

/* */

/* Description: Output can be viewed through system's hyper terminal */

/* window by setting the baud rate to 9600 */

/* -- */

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

23

Code:

#include <REG51.H> /*SFR register declarations */

#include <stdio.h>

void serial_init(void);

//---

//Setup the serial port for 9600 baud at 11.0592MHz.

//---

void serial_init(void)
{

SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */

TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */

TH1 = 0xFD; /* TH1: reload value for 9600 baud,11.0592MHz*/

TR1 = 1; /* TR1: timer 1 run */

TI = 1; /* TI: set TI to send first char of UART */

}

//--------------------------

//Main Program Starts Here

//--------------------------

void main(void)
{

serial_init();

while (1){

printf ("Hello! World\n"); /* Print "Hello World" */

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

Output:

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

24

/*--

Example 2 : Program for serial receive data echo using interrupt

Description: The program is designed so as to echo the characters typed

through the HyperTerminal window

- -- */

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

25

Code:

#include <reg51.h> //include 8051 header file

#include <stdio.h>

void delay(void);

void serial_init(void);

int y;

/************************** Receive Interrupt Function

******************/

void serial_int() interrupt 4 // serial interrupt
{

unsigned char y;

if(RI==1){

y=SBUF; // read SBUF

SBUF=y; //send new value to SBUF

delay();

} RI=0; // clear RI flag

}

/****************************Initialize serial Function****************/

void serial_init(void)
{

TMOD=0x20; //Timer1 8bit autoreload mode

SCON=0x50; // 8bit UART mode

ES=1; //Enable Serial Port Interrupt

EA=1; //Enable All Interrupt

TH1=0xFD; //set Baud Rate 9600 for 11.09MHz

//TH1=(((F-sc/12)/32)/Baudratval)

TR1=1; // Start timer 1

TI=1;

}

/***************************Delay

Function*******************************/

void delay(void)

{
int i;

for(i=0;i<=10000;i++);

}

/************************** Main Function

********************************/

void main()

{

serial_init();

while(1); // loop infinitely waiting only for serial interrupts

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

26

4. Write a Program for encryption / decryption.

Aim

Writing a program for encryption/decryption

Program

Cryptography(or cryptology; derived from Greek κρύπτω krýpto "hidden" and the

verb γράφω gráfo "to write" or λέγειν legein "to speak") is the practice and study of

hiding information. In modern times, cryptography is considered to be a branch of

both mathematics and computer science, and is affiliated closely with information

theory, computer security, and engineering. Cryptography is used in applications

present in technologically advanced societies; examples include the security of ATM

cards, computer passwords, and electronic commerce, which all depend on

cryptography.

Until modern times, cryptography referred almost exclusively to encryption, the

process of converting ordinary information (plaintext) into unintelligible gibberish

(i.e., ciphertext). Decryption is the reverse, moving from unintelligible ciphertext to

plaintext. A cipher

encryption and the reversing decryption. The detailed operation of a cipher is

controlled

both by the algorithm and, in each instance, by a (ideally, known only to the

communicants) for a specific message exchange context. Keys are important, as

ciphers without variable keys are trivially breakable and therefore less than useful for

most purposes. Historically, ciphers were often used directly for encryption or

decryption, without additional procedures such as authentication or integrity checks.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

27

/*--

Example : Encryption & Decryption

Description : Get data from serial port, decrypted data displayed in

serial window.

- --- */

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

28

Code:

#include<reg51.h> //include the 8051 registers

#include<stdio.h> //include the std i/o header files

/******************* Variable Declaration ****************************/

unsigned int i,n,p,z=37;

unsigned char x[10],y[10];

unsigned char msg1[8],enter[]="\nEnter the No of Character : ";

code unsigned char menu[]="\n"

" Encryption Decryption Program "

"\n "

"\n Press '1': Get Data from keyboard "

"\n Press '2': Display Decrypted Text ";

/******************* Function Declaration ****************************/

void serial();

void encrypt();

void decrypt();

void delay(unsigned int);

/********************* Main Function ****************************/

void main()

{

EA=1; //Enable the Global interrpt

ES=1; //Enable serial Interrupt

serial(); //call serial routine

delay(100);

while(1); //loop forever

}

/******************* Serial Function ****************************/

void serial()
{

SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */

TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */

TH1 = 0xFD; /* TH1: reload value for 9600 baud,11.0592MHz*/

TR1 = 1; /* TR1: timer 1 run */

TI = 1; /* TI: set TI to send first char of UART */

i = 0;

while(menu[i] != '\0')

{

SBUF = menu[i];

delay(20);

i++;

z--;

if(z == 0)

{

z =37; //check end of line

SBUF = 0x0d; //carriage return

delay(50);

}
}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

29

/******************** Delay Subroutine ****************************/

void delay(unsigned int k)
{

unsigned int a;

for(a=0;a<k;a++);

}

/************************** Encryption ****************************/

void encrypt()
{

i = 0;

SBUF = 0x0d; //CR

delay(100);

while(enter[i] != '\0')

{

SBUF = enter[i];

delay(100);

i++;

}

while(RI == 0);

n = SBUF;

RI = 0;

SBUF = n;

delay(100);

SBUF = '\n';

delay(100);

SBUF = '\n';

delay(100);

n = n-0x30;

for(i=0;i<n;i++)

{

while(RI==0);

msg1[i]=SBUF;

delay(100);

printf("\n");

SBUF=msg1[i];

delay(100);

p=(n-i)-1;

printf(":still %d character remaining:\n",p);

printf("\n");

RI=0;

}

printf("Encrypted Text: ");

for(i=0;msg1[i]!='\0';i++) //Encryption progress

{

x[i]=(msg1[i]+10);

delay(100);

printf("%c",x[i]);

}

delay(100);

printf("\n");

EA=1; //enable the serial interrupt

ES=1;

}

/************************** Decryption ****************************/

void decrypt()

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

30

{

printf("\nDecrypted Text: ");

for(i=0;i<n;i++) //Decryption progress

{

y[i]=(x[i]-10);

delay(100);

printf("%c",y[i]);

}

printf("\n");

}

/************************** Serial Interrupt Routine

*********************/

void serin() interrupt 4
{

unsigned char z;

if(RI==1)

{

z=SBUF;

RI=0;

switch(z)

{

case 0x31: //Adcii '1'

encrypt(); //encrypt function

break;

case 0x32: //Ascii '2'

decrypt(); //decrypt function

break;

}

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

31

Output Simulation:

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

32

5. Develop necessary interfacing circuit to read data from a sensor and

process using the 801 and 8051 boards. The data to be displayed on a PC

monitor.

Aim

To Develop necessary interfacing circuit to read data from a sensor and
process using the 801 and 8051 boards. The data to be displayed on a PC monitor.

Program

Analog to Digital Converter unit (ADC 0809)

ADC 0809 is an 8-channel 10

Digital form. In ADC section a jumper is provided to select either external analog

input from signal conditioning as input source or can select internal 5V generator,

which is variable from 0-5V. Th

the any of the port by using the Bus/connector. Reference voltage of 2.5V is given at

the reference input so that the analog input span is 5V. In a sample program

provided with the module the digital ou

Microcontroller, can be view on the hyper terminal of the PC

Features of ADC0809:

 Resolution: 8 Bits

 Operates ratio metrically or with 5VDC, 2.5VDC, or analog span adjusted

voltage reference.

 Differential analog voltage inputs

 Works with 2.5V voltage reference.

 On-chip clock generator.

 0V to 5V analog input voltage range with single 5V supply.

 No zero adjusts required.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

33

/* --- */

/* Example : Program to read Temperature value from ADC */

/* --- */

/* --- */

/* Note :The ADC data lines are interfaced in the Port1 and the

Obtained value in Port1 is converted to decimal value

/* --- */

Flow Chart

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

34

#include <stdio.h> //Define I/O Functions

#include <reg51.h> //Define 8051 Registers

#include <ctype.h>

//-----------------------------

// ADC Control Lines

//-----------------------------

sbit A0 = P2^7; //Address lines Initialization

sbit A1 = P2^6;

sbit A2 = P2^5;

sbit CS = P2^4; //Chip Select Pin

void serial(); //Serial Port Initialization

void delay1(int);

void delay2(int);

unsigned char READ_ADC(void);

unsigned char ch;

unsigned int i;

//-----------------------------

//Delay Function

//-----------------------------

void delay1(int n)

{

int i;

for(i=0;i<n;i++);

}

void delay2(int n)

{

int i;

for(i=0;i<n;i++)

delay1(1000);

}

//-------------------------------------

//Serial Port Initialization

//-------------------------------------

void serial()

{

SCON=0x50; //Serial Mode-1, REN enable

TMOD=0x20; //Timer1, Mode2, 8-bit (Auto Relod mde)

TH1=0xfd; //9600 Baud rate at 11.0592MHz

TR1=1; //Timer 1 ON

TI=1; //Transmit Interrupt Enable

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

35

//--------------------------

//ADC Function

//--------------------------

unsigned char READ_ADC()

{

unsigned char ADC_DATA;

CS = 0; delay2(1); //Triggering ADC by chip Slt Pin

CS = 1; delay2(1);

CS = 0; delay2(1);

CS = 1; delay2(1);

ADC_DATA = P1; //Get the value from Port1

return(ADC_DATA);

}

//--------------------------

// Main Program

//--------------------------

void main(void)

{

P1=0xFF;

serial(); //Serial port Initialization

A0 = 0; // channel '0' LM35 Sensor

A1 = 0;

A2 = 0;

printf("ADC Demo - Channel '0' LM35(Temp Sensor) \n");

printf(" \n");

while(1)

{

ch = READ_ADC(); //Get the value from Channel-0

printf("\rCH0(Temperature) = %2bd’C",toascii(ch*2));

delay2(2);

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT”

Folder to the microcontroller kit, press “RST” Button, user program now

executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

36

7. Sort RTOs (mCOS) on to 89CS1 board and Verify.

Aim

To Sort RTOs (mCOS) on to 89CS1 board and Verify.

Program

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

37

/**

***/

/* Round Robin Scheduling Multitasking */

/* Note: LED’s Blinked in different Delay intervals */

/**

***/

#include <rtx51tny.h> // RTX-51 tiny functions & defines

#include <reg52.h> /* 8051 Register */

sbit LED0 = P0^0; /* LED0 for task1 */

sbit LED1 = P0^2; /* LED0 for task2 */

sbit LED2 = P0^4; /* LED0 for task3 */

/**

****/

/* Task 0 'job0': RTX-51 tiny starts execution with task 0 */

/**

****/

job0 () _task_ 0

{

P1 = 0x00; //P1 make it output port

os_create_task (1); /* start task 1 */

os_create_task (2); /* start task 2 */

os_create_task (3); /* start task 3 */

while (1) { /* endless loop */

os_wait (K_TMO, 5, 0); /* wait for timeout: 5 ticks */

}

}

/**

**/

Task 1 'job1': RTX-51 tiny starts this task with os_create_task (1)

/**

**/

job1 () _task_ 1

{

while (1) { /* endless loop */

LED0 = 1;

os_wait (K_TMO, 30, 0);

LED0 = 0;

os_wait (K_TMO, 30, 0); /* wait for timeout: 10 ticks */

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

38

/**

**/

/* Task 2 'job2': RTX-51 tiny starts this task with os_create_task (2) */

/**

**/

job2 () _task_ 2

{

while (1) { /* endless loop */

LED1 = 1;

os_wait (K_TMO, 50, 0);

LED1 = 0;

os_wait (K_TMO, 50, 0); /* wait for timeout: 50 ticks */

}

}

/**

****/

/* Task 3 'job3': RTX-51 tiny starts this task with os_create_task (3) */

/**

*****/

job3 () _task_ 3

{

while (1) { /* endless loop */

LED2 = 1;

os_wait (K_TMO, 80, 0);

LED2 = 0;

os_wait (K_TMO, 80, 0); /* wait for timeout: 80 ticks */

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

39

Example 2: Cooperative Scheduling Multitasking

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

40

/**

**/

/* Cooperative Scheduling Multitasking */

/* Note: LED Blink, UART, LCD (runs simultaneously) */

/**

**/

#include <rtx51tny.h> // RTX-51 tiny functions & defines

#include <stdio.h>

#include <reg52.h> //8051 Register

#define LCD_DATA P1 //Define LCD_DATA Lines to Port(Port1)

#define LED P0 // Define LED for PORT 0

/*****************Define LCD control pins*************************/

sbit RS = P3^5; //Register Select

sbit RW = P3^6; //LCD Read/Write

sbit lcd_e = P3^7; //LCD Enable

code unsigned char msg[] = (" 8051 MCOS RTOS "); //Display the message

code unsigned char msg1[] = (" MULTITASKING ");

void lcd_cmd(unsigned char);

void lcd_display(unsigned char);

/***/

/* Task 0 : RTX-51 tiny Initializ task */

/***/

void init(void)_task_ 0

{

os_create_task (1); // start task 1 INIT_UART

os_create_task (2); // start task 2 SEND_UART

os_create_task (3); // start task 2 LED Blink

os_create_task (4); // start task 2 LCD Display

while (1)

{ // endless loop

os_wait (K_TMO, 5, 0); // wait for timeout: 5 ticks

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

41

/***/

/* Task 1 : RTX-51 tiny starts initialize serial port with task 0 */

/***/

void uart (void) _task_ 1

{

SCON = 0x50; // SCON: mode 1, 8-bit UART, enable rcvr

TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

TH1 = 0xFD; // TH1: reload value for 9600/11.0592MHz

TR1 = 1; // TR1: timer 1 run

TI = 1; // TI: set TI to send first char of UART

}

/**

*/

/* Task 2 : RTX-51 tiny starts send UART data with task 0 */

/**/

void uart_send(void) _task_ 2
{

while (1)

{

os_wait (K_TMO, 10, 0);

SBUF = 'A';

}

}

/**/

/* Task 3 : RTX-51 tiny starts LED Blink with task 0 */

/**/

void led(void) _task_ 3

{

while (1) { // endless loop

LED = 0x55;

os_wait (K_TMO, 30, 0);

LED = 0xAA;

os_wait (K_TMO, 30, 0);

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

42

/**

**/

/* Task 4 : RTX-51 tiny starts LCD Initializaion with task 0 */

/**

**/

void lcd(void) _task_ 4

{

while (1) { // endless loop

unsigned char i;

lcd_cmd(0x38); //2x16 Character 5x7 dot

os_wait (K_TMO, 2, 0);

lcd_cmd(0x0c); //Display On, cursor off

os_wait (K_TMO, 2, 0);

lcd_cmd(0x06); //Shift Cursor to right

os_wait (K_TMO, 2, 0);

lcd_cmd(0x01); //Clear display screen

os_wait (K_TMO, 2, 0);

//---

// First Line Message Display

//---

lcd_cmd(0x80); //First Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg[i]!='\0')

{

lcd_display(msg[i]);

i++;

}

os_wait (K_TMO, 4, 0);

//---

// Second Line Message Display

//---

lcd_cmd(0xc0); //Second Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg1[i]!='\0')

{

lcd_display(msg1[i]);

i++;

}

os_wait (K_TMO, 4, 0);

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

43

//----------------------------------

// LCD command Function

//----------------------------------

void lcd_cmd(unsigned char cmnd)

{

LCD_DATA = cmnd;

RS = 0; RW = 0;

lcd_e = 1;

os_wait (K_TMO, 2, 0);

lcd_e = 0;

}

//----------------------------------

// LCD Data Function

//----------------------------------

void lcd_display(unsigned char dat)

{

LCD_DATA = dat;

RS = 1; RW = 0;

lcd_e = 1;

os_wait (K_TMO, 2, 0);

lcd_e = 0;

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

44

8. Simulate on elevator movement using RTO’s on 89CSI board.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

45

/**

****/

/* Task_Init.h:

/* Project specific header for the Elevator example

/**

****/

#define LCD_DATA P1 //Define LCD_DATA Lines to Port(Port1)

#define LED P0 // Define LED for PORT 0

#define INIT 0 //Task0 for Initialize all task

#define UART 1 //Task1 for UART

#define UART_SEND 2 //Task2 for UART_send data

#define LCD_INIT 3 //Task3 for LCD Initialize

#define KEY_OUT 4 //Task4 for Key out for outside elevator

#define KEY_IN 5 //Task5 for Key in for inside elevator

code unsigned char msg0[] = ("ELEVATOR SIMULATION "); //serial communi

msg

code unsigned char msg[] = (" RTX-51 BASED “); //Display the message

code unsigned char msg1[] = (" ELEVATOR SIMUL ");

code unsigned char msg2[] = ("OPEN "); //lcd/uart msg

code unsigned char msg3[] = ("CLOSE");

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

46

/**

****/

/* Elevator Simulation by using RTOS(Multitasking) */

/**

****/

#include <rtx51tny.h> // RTX-51 tiny functions & defines

#include <reg51.h> //8051 Register

#include "task_init.h" // project specific header file

/***********************Define LCD control

pins*************************/

sbit RS = P3^5; //Register Select

sbit RW = P3^6; //LCD Read/Write

sbit lcd_e = P3^7; //LCD Enable

unsigned char R,C,ch;

unsigned int i=0,j=0;

code unsigned char Key[4][2] = { '0','5', //Matrix Keypad Character

'1','6', //Initialization

'2','7', //Initialization

'3','8', //Initialization

};

void lcd_cmd(unsigned char);

void lcd_display(unsigned char);

void open(void);

void close(void);

void DelayMs(int);

void upscroll(int n);

void downscroll(int n);

/**

**/

/* Task 0 : RTX-51 tiny Initializ task */

/**

**/

void init(void)_task_ INIT

{

P0 = 0x00;

os_create_task (UART); // start task 4 INIT_UART

os_create_task (UART_SEND); // start task 5 UART_SEND

os_create_task (LCD_INIT); // start task 1 INIT_LCD

os_create_task (KEY_OUT); // start task 3 Floor Status

os_create_task (KEY_IN); // start task 3 Floor Status

while (1)

{ // endless loop

os_wait (K_TMO, 5, 0); // wait for timeout: 5 ticks

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

47

/**

**/

/* Task 1 : RTX-51 tiny starts initialize serial port with task 0 */

/**

**/

void uart (void) _task_ UART

{

SCON = 0x50; // SCON: mode 1, 8-bit UART, enable rcvr

TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

TH1 = 0xFD; // TH1: reload value for 9600 @ 11.0592MHz

TR1 = 1; // TR1: timer 1 run

TI = 1; // TI: set TI to send first char of UART

}

/**

*/

/* Task 2 : RTX-51 tiny starts send UART data with task 0 */

/**

*/

void uart_send(void) _task_ UART_SEND

{

while(msg0[j]!='\0')

{

SBUF=msg0[j];

j++;

os_wait (K_TMO, 2, 0);

} os_wait (K_TMO, 2, 0);

}

/**

***/

/* Task 3 : RTX-51 tiny starts LCD Initializaion with task 0 */

/**

***/

void lcd(void) _task_ LCD_INIT

{

while (1) { // endless loop

unsigned char 1;

lcd_cmd(0x38); //2x16 Character 5x7 dot

os_wait (K_TMO, 2, 0);

lcd_cmd(0x0c); //Display On, cursor off

os_wait (K_TMO, 2, 0);

lcd_cmd(0x06); //Shift Cursor to right

os_wait (K_TMO, 2, 0);

lcd_cmd(0x01); //Clear display screen

os_wait (K_TMO, 2, 0);

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

48

//---

// First Line Message Display

//---

lcd_cmd(0x80); //First Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg[i]!='\0')

{

lcd_display(msg[i]);

i++;

} os_wait (K_TMO, 4, 0);

//---

// Second Line Message Display

//---

lcd_cmd(0xc0); //Second Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg1[i]!='\0')

{

lcd_display(msg1[i]);

i++;

}

os_wait (K_TMO, 4, 0);

os_delete_task (LCD_INIT);

}

}

/***************************Elevator Open

******************************/

void open(void)

{

lcd_cmd(0xca); //Second Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg2[i]!='\0')

{

lcd_display(msg2[i]);

os_wait (K_TMO, 1, 0);

SBUF = msg2[i];

i++;

}

os_wait (K_TMO, 4, 0);

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

49

/***************************Elevator Close

******************************/

void close(void)

{

lcd_cmd(0xca); //Second Line Initialization

os_wait (K_TMO, 2, 0);

i=0;

while(msg3[i]!='\0')

{

lcd_display(msg3[i]);

os_wait (K_TMO, 1, 0);

SBUF = msg3[i];

i++;

}

os_wait (K_TMO, 4, 0);

}

/***************************LED UP scroll

******************************/

void upscroll(int n)

{

int i,j=0;

for(i=0;i<n;i++)

{

for(j=0x10;j<=0x80;j<<=1) //shift led one position

{

P0=j; //Initialize Port1

os_wait (K_TMO, 20, 0);

}

}

}

/***************************LED Downscroll

*****************************/

void downscroll(int n)
{

int i,j=0;

for(i=0;i<n;i++)

{

for(j=0x80;j>=0x10;j>>=1) //shift led one position

{

P0=j; //Initialize Port1

os_wait (K_TMO, 20, 0);

}

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

50

/***************************LCD Command

*****************************/

void lcd_cmd(unsigned char cmnd)

{

LCD_DATA = cmnd;

RS = 0; RW = 0;

lcd_e = 1;

os_wait (K_TMO, 2, 0);

lcd_e = 0;

}

/***************************LCD Display

******************************/

void lcd_display(unsigned char dat)

{

LCD_DATA = dat;

RS = 1; RW = 0;

lcd_e = 1;

os_wait (K_TMO, 2, 0);

lcd_e = 0;

}

/**

**/

/* Task 4 : RTX-51 tiny starts Elevator outside key with task 0 */

/**

**/

void Key_Scan_out(void) _task_ KEY_OUT

{

while(1){

unsigned int i = 0;

//Scanning for Row Value

P2 = 0x0F; //Initialize Port2 to 0Fh

while(P2 == 0x0F);

if(P2 == 0x0E) //Checking from Row 0 to 3

R = 0;

else if(P2 == 0x0D)

R = 1;

else if(P2 == 0x0B)

R = 2;

else if(P2 == 0x07)

R = 3;

//Scanning for Column Value

P2 = 0xF0;

//Initialize Port2 to F0h

while(P2 == 0xF0);

if(P2 == 0xE0) //Checking from Column 0 to 3

C = 0;

else if(P2 == 0xD0)

C = 1;

else if(P2 == 0xB0)

C = 2;

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

51

else if(P2 == 0x70)

C = 3;

os_wait (K_TMO, 10, 0);

//Floor Status

ch = Key[R][C];

if(ch=='0')

{

downscroll(1);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 2, 0);

os_create_task (KEY_IN); //create keyscan inside

P0 =0x08;

}

if(ch=='1')

{

downscroll(2);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 1, 0);

os_create_task (KEY_IN); //create keyscan inside

P0 = 0x04;

}

if(ch=='2')

{

downscroll(3);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 1, 0);

os_create_task (KEY_IN); //create keyscan inside

P0 = 0x02;

}

if(ch=='3')

{

downscroll(4);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 1, 0);

os_create_task (KEY_IN); //create keyscan inside

P0 = 0x01;

}

}

}

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

52

/**

**/

/* Task 5 : RTX-51 tiny starts Elevator inside key with task 0 */

/**

**/

void Key_Scan_in(void) _task_ KEY_IN

{

while(1){

unsigned int i = 0;

//Scanning for Row Value

P2 = 0x0F; //Initialize Port2 to 0Fh

while(P2 == 0x0F);

if(P2 == 0x0E) //Checking from Row 0 to 3

R = 0;

else if(P2 == 0x0D)

R = 1;

else if(P2 == 0x0B)

R = 2;

else if(P2 == 0x07)

R = 3;

//Scanning for Column Value

P2 = 0xF0; //Initialize Port2 to F0h

while(P2 == 0xF0);

if(P2 == 0xE0) //Checking from Column 0 to 3

C = 0;

else if(P2 == 0xD0)

C = 1;

else if(P2 == 0xB0)

C = 2;

else if(P2 == 0x70)

C = 3;

os_wait (K_TMO, 10, 0);

//Elevator Inside

ch = Key[R][C];

if(ch=='5')

{

upscroll(1);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 2, 0);

P0 = 0x08;

os_create_task (KEY_OUT); //create keyscan inside

}

if(ch=='6')

{

upscroll(2);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 2, 0);

P0 = 0x04;

os_create_task (KEY_OUT); //create keyscan inside

}

if(ch=='7')

{
upscroll(3);

open(); os_wait (K_TMO, 200, 0);

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

53

close(); os_wait (K_TMO, 2, 0);

P0 = 0x02;

os_create_task (KEY_OUT); //create keyscan inside

}

if(ch=='8')

{

upscroll(4);

open(); os_wait (K_TMO, 200, 0);

close(); os_wait (K_TMO, 2, 0);

P0 = 0x01;

os_create_task (KEY_OUT); //create keyscan inside

}

}

}

Execution:

Note: After Loading corresponding Examples Hex file located in “OUT” Folder to

the microcontroller kit, press “RST” Button, user program now executes.

SYSTEM DESIGN WITH EMBEDDED LINUX LAB

54

TEXT BOOKS:

1) Computers and Components, Wayne Wolf, Elseveir.

2) The 8051 Microcontroller, Third Edition, Kenneth J. Ayala, Thmson .

REFERENCES:

1) Embedding system building blocks, Labrosse, via CMP publishers.

2) Embedded Systems, Raj Kamal, TMH.

3) Micro Controllers, Ajay V Deshmukhi, TMH.

4) Embedded System Design, Frank Vahid, Tony Givargis, John Wiley.

5) Microcontrollers, Raj Kamal, Pearson Edition.

6) An Embedded Software Primer, David E. Simon, Pearson Edition.

7) ‘Embedded/Real-Time Systems’, KVKKF Prasad, Dreamtech, Press.

	INSTRUCTOR : Dr. N. SRINIVAS
	PROGRAMMERS : R. S. PILLAI
	PREFACE
	ACKNOWLEDGEMENT
	GENERAL INSTRUCTIONS
	SAFETY PRECAUTIONS
	On board Peripherals:
	There are several tasks involved in creating a new embedded project:
	Terminal Software for Check the Serial port Data receiving from Microcontroller to PC:
	1. Write a Program to
	Aim:
	Program
	Example 1 : Read Switch status & displayed in LED’s Description : Depends upon the dip switch position the corresponding leds are on (or) off
	FLOW Chart
	/************************** Main Function*****************************/ void main(void)
	Example 2 : Read Switch status & scrolling the LED’s Description : Depends upon the dip switch position the led will be scrolling
	/************************** Main Function*****************************/ void main(void) (1)
	/*************************** Delay for 1 msec*************************/
	/*************************** LED Scroll Left *************************/
	/*************************** LED Scroll Left *************************/ (1)
	b) To make LEDs blink
	Flow Chart
	// Main Program
	// Delay for 1 msec
	Example 2 : Program to Blink LED at Port P0 Description : Connect a LED at a port pins and make it flash at predefined intervals.
	Flow Chart (1)
	// Main Program (1)
	// Delay for 1 msec (1)
	Equipment Requirements:
	Software Rquirements :
	Interfacing Switch & Buzzer with 8051:
	Flow Chart:
	Results/Output verification:
	3. Write a Program for serial communication.
	Program (1)
	/* Example 1 : Program to send data serially through serial port */
	/* Description: Output can be viewed through system's hyper terminal */
	Flow Chart (2)
	//Setup the serial port for 9600 baud at 11.0592MHz.
	//Main Program Starts Here
	Example 2 : Program for serial receive data echo using interrupt Description: The program is designed so as to echo the characters typed through the HyperTerminal window
	Flow Chart (3)
	/************************** Receive Interrupt Function
	/****************************Initialize serial Function****************/
	/***************************Delay Function*******************************/ void delay(void)
	/************************** Main Function
	4. Write a Program for encryption / decryption.
	Program (2)
	Example : Encryption & Decryption
	Flow Chart (4)
	/******************* Variable Declaration ****************************/
	/******************* Function Declaration ****************************/
	/********************* Main Function ****************************/
	/******************* Serial Function ****************************/
	/******************** Delay Subroutine ****************************/
	/************************** Encryption ****************************/
	/************************** Decryption ****************************/
	/************************** Serial Interrupt Routine
	5. Develop necessary interfacing circuit to read data from a sensor and process using the 801 and 8051 boards. The data to be displayed on a PC
	Program (3)
	/* Example : Program to read Temperature value from ADC */
	/* Note :The ADC data lines are interfaced in the Port1 and the Obtained value in Port1 is converted to decimal value
	Flow Chart (5)
	// ADC Control Lines
	//Delay Function
	//Serial Port Initialization
	//ADC Function
	// Main Program (2)
	7. Sort RTOs (mCOS) on to 89CS1 board and Verify.
	Program (4)
	/* Task 0 'job0': RTX-51 tiny starts execution with task 0 */
	Task 1 'job1': RTX-51 tiny starts this task with os_create_task (1)
	/* Task 2 'job2': RTX-51 tiny starts this task with os_create_task (2) */
	/* Task 3 'job3': RTX-51 tiny starts this task with os_create_task (3) */
	Example 2: Cooperative Scheduling Multitasking
	/* Cooperative Scheduling Multitasking */
	/*****************Define LCD control pins*************************/
	/* Task 0 : RTX-51 tiny Initializ task */
	/* Task 1 : RTX-51 tiny starts initialize serial port with task 0 */
	/* Task 2 : RTX-51 tiny starts send UART data with task 0 */
	/* Task 3 : RTX-51 tiny starts LED Blink with task 0 */
	/* Task 4 : RTX-51 tiny starts LCD Initializaion with task 0 */
	// First Line Message Display
	// Second Line Message Display
	// LCD command Function
	// LCD Data Function
	8. Simulate on elevator movement using RTO’s on 89CSI board.
	/* Task_Init.h:
	/* Elevator Simulation by using RTOS(Multitasking) */
	/***********************Define LCD control pins*************************/
	/* Task 0 : RTX-51 tiny Initializ task */ (1)
	/* Task 2 : RTX-51 tiny starts send UART data with task 0 */ (1)
	/* Task 3 : RTX-51 tiny starts LCD Initializaion with task 0 */
	// First Line Message Display (1)
	// Second Line Message Display (1)
	/***************************Elevator Open
	/***************************Elevator Close
	/***************************LED UP scroll
	/***************************LED Downscroll
	/***************************LCD Command
	/***************************LCD Display
	/* Task 4 : RTX-51 tiny starts Elevator outside key with task 0 */
	/* Task 5 : RTX-51 tiny starts Elevator inside key with task 0 */
	TEXT BOOKS:
	REFERENCES:

