QUESTION BANK

Course Name	:	ANALOG ELECTRONICS
Course Code	:	EC302ES
Class	:	II B. Tech I Semester
Branch	:	Electronics and Communication Engineering
Year	:	2017 - 2018
Course Faculty	:	Mr.S.Arvind Kumar.

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of MARRI LAXMAN REDDY Institute of Technology & Management, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

	UNIT-I		
	SHORT ANSWER TYPE		
S. No.	Question	Blooms Taxonomy Level	Course Outcomes
1	List the classification of amplifiers based on the input & output.	Remember	j,d
2	Write the expressions for AV and Rin of a CB amplifier	Remember	j,d
3	Draw the hybrid equivalent model of CE Amplifier	Understand	а
4	List the classification of amplifiers based on the period of conduction.	Remember	j,d
5	What are the main characteristics of a Darlington amplifier?	Understand	а
6	Why direct coupling is not suitable for amplification of high frequency	Understand	а
7	List the classification of amplifiers based on the frequency &bandwidth.	Remember	j,d
8	Write the expressions for Ai and Rin of a CC amplifier	Remember	j,d
9	What is the frequency range employed for h-parameters?	Remember	j,d

10	Define various hybrid parameters in approximate model.	Remember	j,d
11	In a multistage amplifier, what is the coupling method required to amplify dc signals?	Understand	а
12	Draw the frequency response of the type of coupling employed mainly for the purpose of impedance matching.	Remember	j,d
13	Justify the requirement of Total Harmonic Distortion	Understand	а
14	Comment on the faults of h-parameter model.	Understand	а
15	Justify the effect of multistage amplifiers on bandwidth.	Knowledge	j,d
16	Relate the gain of 'n' identical stages with a single stage of amplification stages	Understand	a
17	Give the expression relating 'n' identical stages with gain 'A' with overall gain.	Knowledge	j,d
18	Define the concept of cascading.	Knowledge	j,d
19	List out the characteristics of CB amplifier.	Remember	j,d
20	Name the connection employed for impedance matching/	Understand	а
	LONG ANSWER TYPE		
S. No.	LONG ANSWER TYPE Question	Blooms Taxonomy Level	Course Outcomes
S. No. 1	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions.	Blooms Taxonomy Level Remember	Course Outcomes j,d
S. No. 1	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz.	Blooms Taxonomy Level Remember Evaluate	Course Outcomes j,d a,e,l,k
S. No. 1 2 3	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz. What is non-linear distortion? List the causes for this type of distortion in amplifiers.	Blooms Taxonomy Level Remember Evaluate Remember	Course Outcomes j,d a,e,l,k j,d
S. No. 1 2 3 4	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz. What is non-linear distortion? List the causes for this type of distortion in amplifiers. Using h-parameter model, derive the expressions for A _I &R _i for a CE amplifier circuit.	Blooms Taxonomy Level Remember Evaluate Remember Remember	Course Outcomes j,d a,e,l,k j,d j,d j,d
S. No. 1 2 3 4 5	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz. What is non-linear distortion? List the causes for this type of distortion in amplifiers. Using h-parameter model, derive the expressions for A _I &R _i for a CE amplifier circuit. Draw the circuit diagram of emitter follower & derive the expressions for A _I &R _i .	Blooms Taxonomy Level Remember Evaluate Remember Remember Remember	Course Outcomes j,d a,e,l,k j,d j,d j,d
S. No. 1 2 3 4 5 6	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz. What is non-linear distortion? List the causes for this type of distortion in amplifiers. Using h-parameter model, derive the expressions for A _I &R _i for a CE amplifier circuit. Draw the circuit diagram of emitter follower & derive the expressions for A _I &R _i . Compare CE, CC & CB amplifier in terms of Av, Ai, Ri& Ro.	Blooms Taxonomy Level Remember Evaluate Remember Remember Remember Analyse	Course Outcomes j,d a,e,l,k j,d j,d j,d b
S. No. 1 2 3 4 5 6 7	LONG ANSWER TYPE Question State Miller's theorem. Specify its relevance in the analysis of a BJT Amplifier & obtain the expressions. Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 432 Hz. What is non-linear distortion? List the causes for this type of distortion in amplifiers. Using h-parameter model, derive the expressions for A ₁ &R _i for a CE amplifier circuit. Draw the circuit diagram of emitter follower & derive the expressions for A ₁ &R _i . Compare CE, CC & CB amplifier in terms of Av, Ai, Ri& Ro. Draw the circuit diagram of Darlington pair circuit deriving its important characteristics.	Blooms Taxonomy Level Remember Evaluate Remember Remember <th< td=""><td>Course Outcomesj,da,e,l,kj,dj,dj,dj,dj,d</td></th<>	Course Outcomesj,da,e,l,kj,dj,dj,dj,dj,d

	model.		
9	Draw the circuit diagram of CE amplifier& derive the expressions	Remember	j,d
	for $A_I \& R_i$.		
10	Define the expression for the Voltage gain & output impedance in	Remember	j,d
	the h-parameter.		
11	For a single stage transistor amplifier, $Rs=5K\Omega$, $R_L=10$ K Ω ,	Evaluate	a,e,l,k
	hfe=50, hie=1.1 K Ω , hre=2.5*10 ⁻⁴ , hoe=25 μ A/v. Find Ai, Ri, Av.		
12	Draw the circuit diagram of CB amplifier & its h-parameter	Remember	j,d
	equivalent circuit. Give its characteristics.		
13	In detail say about the existence of dual of Millers theorem.	Knowledge	j,d
14	Explain in detail the frequency response of RC coupling	Knowledge	J,d
15	Give the advantages & applications of Emitter follower	Remember	id
15	or the unit and tailing of the appreciations of "Emilier fortower		J,G
16	Explain in detail the frequency response of direct coupling	Knowledge	j,d
		_	_
17	Write short notes on frequency distortion	Knowledge	j,d
10	Cive the educators & analisations of Common have smallfing	Domomhor	
18	Give the advantages & applications of Common base amplifier	Kemember	J,d
19	Explain in detail the frequency response of transformer coupling	Knowledge	id
1	r ····································		<u> </u>
20	Give the advantages & applications of Common Emitter amplifier	Remember	j,d

UNIT – II SHORT ANSWER TYPE			
S. No.	Question	Blooms Taxonomy Level	Course Outcomes
1.	What is the relationship between fT and f β ? Discuss the significance of fT	Understand	а
2.	Define hybrid $-\pi$ parameters	Remember	j,d
3.	Define logarithm and dB	Remember	j,d

4.	Write the expression for current gain for a CE amplifier with o/p short circuit	Analysing	b
5.	Give the essence of frequency response of an amplifier.	Remember	j,d
6.	Give the relation between Ic& temperature in terms of gm.	Remember	j,d
7.	Name the diffusion & transistion capacitance employed in hybrid- π model.	Understand	а
8.	Draw the small signal model of CS amplifier at lower frequency.	Remember	j,d
9.	Give the relation between $f_{\beta}\&f_{T}$.	Remember	j,d
10.	Relate the parameter rbb'&rb'e	Analysing	b
11.	Say out the other name of hybrid -pi model.	Remember	j,d
12.	Name the diffusion capacitance included in the hybrid-pi- model	Remember	j,d
13.	What is the frequency range employed for hybrid pi model.	Knowledge	j,d
14	Which type of capacitance employed for hybrid pi model.	Knowledge	j,d
15	Name the transistion capacitance included in the hybrid-pi- model	Remember	j,d
16	What bias is applied to the gate of the CS amplifier	Knowledge	j,d
17	What is unity current gain frequency,	Knowledge	j,d
18	At lower frequency which capacitors have an effect on the circuit	Understand	а
19	In the case of CE short circuit current gain what is the value of the load.	Remember	j,d
20	Give the expression for rce in the hybrid –pi model	Remember	j,d
	LONG ANSWER TYPE		
S. No.	Question	Blooms Taxonomy Level	Course Outcomes
1	Draw the circuit diagram of single stage RC coupled BJT amplifier. Discuss the effect of emitter bypass capacitor on lower frequency response.	Analysing	a,e,l,k
2	Define frequency response & explain the importance of roll-off frequencies.	Evaluate	a,e,l,k
3	Comparing the hybrid & hybrid- π model, obtain the expressions for 'gm' & 'rb'e'.	Analysing	a,e,l,k

4	Obtain the frequency expression at which the gain reduces to $2^{1/2}$	Knowledge	j,d
	times the maximum value for a CE amplifier with $R_L=0$.		-
5	A PMOS transistor s operated in the triode region with the	Evaluate	a,e,l,k
	following specifications, Vgs= -4.5V,Vth= -1V, Vds= -2.2V,		
	W/L=95, $\mu_n C_{ox}$ =95 μ A/V ² . Find its drain current?		
6	With a neat sketch explain the drain characteristics of the	Understand	А
	MOSFET amplifier		
7	Explain & obtain the effect of coupling & shunt capacitors at	Understand	А
	lower frequencies.		
8	Consider a CE stage with resistive load R_L , using Miller's theorem, derive the expression for Ai.	Understand	A
	Comparing the hybrid & hybrid- π model, obtain the expressions for 'rbb'' & 'rce'.	Analysing	a,e,l,k
10	At Ic=1mA, Vce=20V, a certain transistor data shows Cc=3pF, hfe=200,w _T =500Mrad/sec. Calculate gm, rb'e, cb'e.	Evaluate	a,e,l,k
11	Comparing the hybrid & hybrid- π model, obtain the expressions for 'rb'e' & 'rbb''.	Analysing	a,e,l,k
12	With a neat sketch explain the transfer characteristics of the	Understand	А
	MOSFET amplifier		
13	With a neat circuit equivalent model, derive the expression for	Remember	j,d
	Av for CS amplifier with resistive load.		
14	Comparing the hybrid & hybrid- π model, obtain the expressions for 'gm' & 'rce'.	Analysing	a,e,l,k
15	Derive the expression for CE short circuit current gain.	Knowledge	j,d
16	Draw the small signal equivalent circuit for an emitter follower	Understand	А
	at high frequency & obtain the expression Av.		
17	With Ic=5mA, Vce=10V, at room temperature, hfe=100,	Evaluate	a,e,l,k
	hie=600 Ai=10,at 10MHz , Cc=3pF. Find f_{β} , gm, rb'e, rbb'.		
18	Draw the hybrid- π model & obtain the expression for the	Remember	j,d
	diffusion capacitance.		
19	Draw the hybrid- π equivalent of a CE transistor for high	Remember	j,d
	frequency & explain the significance of each parameter.		
20	If the current gain of the CE amplifier is made equal to '1' then	Analysing	a,e,l,k
	obtain the frequency expression.		
l.			

GROUP - III (ANALYTICAL QUESTIONS)

S. No	QUESTIONS	Blooms Taxonomy	Course
		Level	Outcome
	UNIT-I		
1	SINGLE STAGE & MULTISTAGE AMPLIFIERS		1.0
1.	A CE amplifier is driven by voltage source with internal resistance	Evaluate	1,8
	$K_s=800\Omega$. The load impedance $K_L=2K\Omega$. The h-parameters are		
2	$\Pi_{ie}=1.1$ K, $\Pi_{re}=2.5$ $\pm 10^{\circ}$, $\Pi_{fe}=50$, $\Pi_{0e}=25\mu$ A/v. Compute AI, AV, AIs, Ki, $Z_{0} \propto A_{p}$.	Evoluoto	1.0
2.	R = 8000 The load impedance RI = $2k_0$ The h-parameters are h:= 22.0	Lvaluate	1,0
	$R_s = 0.0022$. The rotating end inpedance RL=2K 32. The in-parameters are $n_{10} = 22.32$ h.t.=3*10 ⁻⁴ hs==0.98 hs==0.50 Å/V Compute At Ay At R: 7.8 Å.		
3	A CC amplifier is driven by voltage source with internal resistance	Evaluate	1.8
5.	$P = 8000$ The load impedance $PI = 2k \Omega$ The h parameters are h: =1.1K \Omega	Lvaluate	1,0
	$h_{s}=50052$. The load impedance RL=2K S2. The in-parameters are $h_{c}=1.1K$ S2 $h_{rs}=1$ $h_{rs}=51$ $h_{rs}=25\mu$ A/V. Compute AI AV. AI R; Z ₂ & A _p		
4.	A CE amplifier is driven by voltage source with internal resistance $R_s = 600\Omega$.	Evaluate	1.8
	RL = 12000. The h-parameters are higher 1 1K hrs=2.5*10 ⁻⁴ hrs=50 hrs=25µ A/V		-,-
	Compute ALAV AL R_i Z_o R_i Z_o R_o using (a) exact analysis (b) Approximate		
	analysis		
5.	Draw the circuit of CE amplifier. Draw it's equivalent circuit using	Evaluate	1,8
	Approximate model. Calculate A _I , A _V , R_i , Z_o & R_{ot} if R_s =1000 Ω , RL =1200 Ω .		
	The h-parameters are $h_{ie}=1.1$ K, $h_{re}=2.5*10^{-4}$, $h_{fe}=50$, $h_{oe}=24\mu$ A/V.		
6.	Draw the circuit of CB amplifier. Draw it's equivalent circuit using	Evaluate	1,8
	Approximate model. Calculate A _I ,A _V , R _i , Z_0 & R _{ot} if R _s =900 Ω , RL=2000 Ω .		
	The h-parameters are $h_{ie}=1.1K$, $h_{re}=2.5*10^{-4}$, $h_{fe}=50$, $h_{oe}=24\mu A/V$.		
7.	Draw the circuit of CC amplifier. Draw it's equivalent circuit using	Evaluate	1,8
	Approximate model. Calculate $A_{I,AV}$, R_{i} , Z_{0} & R_{ot} if R_{s} =500 Ω , RL =2000 Ω .		
	The h-parameters are $h_{ie}=1.1K$, $h_{re}=2.6*10^{-1}$, $h_{fe}=54$, $h_{oe}=26\mu A/V$.		
8.	A CE amplifier with emitter resistor $R_E=800\Omega$, $R_L=1k\Omega$. The h-parameters	Evaluate	1,8
	areh _{ie} =1.1K, h_{re} =5*10 ⁻⁺ , h_{fe} =50, h_{oe} =25 μ A/V. Compute A _I ,A _V , A _{Is} , R _i , R _{ot} . Use		
	the Approximate model if permissible.		1.0
9.	Draw the circuit of CE amplifier with emitter resistor R_E . Draw it's	Evaluate	1,8
	$R = 6000$ $R = 10000$ $R = 8000$ The h peremeters are $h = 1.2K$ h $= 2*10^{-4}$		
	$K_{\rm S}$ =00052, KL=100052, KE=00052. The n-parameters are n _{1e} =1.2K, n _{re} =5+10, h _e =50 h _e =25 µ A/V		
10	A CC amplifier with emitter resistor $R_{\rm F}=800\Omega$. Rc=400 Ω in the collector	Evaluate	18
10.	circuit The h-parameters are his= 1.1 K hrs= 2.4×10^{-4} hrs= 60 hos= 25 u A/V	L'undute	1,0
	Compute ALAV, R_i Use the Exact model.		
11.	A Darlington emitter follower circuit uses two identical transistors having the	Evaluate	1,8
	following h-parameters $h_{ie}=1.1K$, $h_{re}=2.5*10^{-4}$, $h_{fe}=60$, $h_{oe}=20\mu$ A/V. $R_{E}=2K\Omega$		
	, $R_S=500\Omega$ Compute overall A _I & A _V , R_i , R_o & R_{ot} .		
12.	A Darlington emitter follower circuit uses two identical transistors having the	Evaluate	1,8
	following h-parameters $h_{ie}=1.1$ K, $h_{re}=2.2*10^{-4}$, $h_{fe}=50$, $h_{oe}=20\mu$ A/V.		
	$R_{E2}=3K\Omega$, $R_S=400\Omega$, $R_1=90K\Omega$, $R_2=10K\Omega$ Compute overall A _I & A _V , R_i ,		
	Ro&Rot.		
13.	A CE-CC Amplifier uses $R_S=1K\Omega$, $R_{C1}=R_{E2}=4K\Omega$. The h-parameters	Evaluate	1,8
	$h_{ie}=1.2K$, $h_{re}=5*10^{-4}$, $h_{fe}=50$, $h_{oe}=25\mu A/V$, $h_{ic}=1.2 \Omega$, $h_{rc}=1$, $h_{fc}=-1.2 \Omega$		
	$51,h_{oc}=25\mu A/V$. Compute individual & overall A I& AV, R _i , R _o & R _{ot} .		
14.	A CE-CB (cascode) Amplifier uses $R_S=1K\Omega$, $R_{C1}=25K\Omega$, $R_E=100\Omega$, R3=200K Ω R4=10K Ω . The h-parameters $h_{ie}=2K$, $h_{re}=0, h_{fe}=100, h_{oe}=0$.	Evaluate	1,8

	Compute individual & overall A I& AV, Ri, Ri, Ro& Rot.		
15.	A CE-CE(cascade) Amplifier uses $R_S=1K\Omega$, $R_{C1}=15K\Omega$, $R_{E1}=100\Omega$, $R_{C2}=4K\Omega$, $R_{E2}=330\Omega$, $R_{I}=200K\Omega$ $R_{2}=10K\Omega$ for the first stage, for second stage $R_{I}=47K\Omega$ $R_{2}=4.7K\Omega$. The h-parameters $h_{ie}=1.2K$, $h_{re}=2.5*10^{-4}$, $h_{fe}=50$, $h_{oe}=25*10^{-6}$ A/V. Compute individual & overall A I& AV, R_{i} , R_{o}	Evaluate	1,8

UNIT-II BJT AMPLIFIERS-FREQUENCY RESPONSE

1.	A CE amplifier with the load impedance $R_L=2k \Omega$. The hybrid- π parameters arer _b 'e=1K Ω , C e=100pF, h _{fe} =50, C C =3pF, g _m =50mS. Draw the high frequency hybrid- π circuit neglecting R ₁ , R ₂ , r _{bb} '. Calculate the time constants of output & input circuits & f _H & A ₁ at 100 KHz.	Evaluate	2,8
2.	At I _c =1mA & V _{CE} =10V a certain transistor has $C_c=C_b$ 'c=3pF and $w_t=500$ Mrad/sec. Calculate r_b 'e, C_e .gm& w_β .	Evaluate	2,8
3.	Short circuit current gain of CE amplifier is 25 at frequency=2Mhz. If f_{β} =200Khz.Calculate f_T , h_{fe} , $ A_I $ at frequency of 10Mhz & 100 Mhz.	Evaluate	2,8
4.	A high frequency CE amplifier with the $R_s=0$ calculate f_H if load impedance $R_L=0k \Omega \& R_L=1k \Omega$. Assume typical hybrid- π parameters.	Evaluate	2,8
5.	A high frequency CE amplifier with the $R_s=1K \Omega$ calculate f_H , A_{VSlow} and A_{VShigh} if load impedance $R_L=0k \Omega \& R_L=1k \Omega$. Assume typical hybrid- π parameters.	Evaluate	2,8
6.	A CE amplifier is measured to have a bandwidth of 4Mhz with the R _L =600 Ω calculateR _s that will give the required bandwidth. Assume typical hybrid- π parameters r _{bb} :=100 Ω , ,h _{fe} =100,C _C =2pF, g _m =50mS, f _T =300Mhz.	Evaluate	2,8
7.	A BJT has the following parameters measured at I _C =1mA, h_{ie} =3k, h_{fe} =100, C _C =2pF, C _e =18pF, f _T =4Mhz. Find, $r_{bb'}$, $r_{b'e}$, $g_m \& f_H$ for R _L =1K Ω .	Evaluate	2,8
8.	The hybrid- π parameters are $r_{b'e}=1K \Omega$, $r_{b'c}=4M \Omega$, $r_{ce}=80K \Omega$, $r_{bb'}=100\Omega$, C $_{e}=100pF h_{fe}=50$, CC $=3pF$, $g_{m}=50mS$. Find upper 3db frequency of current gain A _I , A _{VS} .	Evaluate	2,8
9.	For a single stage CE amplifier Find the value of R_s that will give 3db frequency f_H which is twice the value obtained with $R_s = \infty$ (ideal current source). $r_{b'e}=1K \Omega$, $C_e=100 pF$, $h_{fe}=50$, $C_C=3 pF$, $g_m=50 mS$, $r_{bb}=100 \Omega$.	Evaluate	2,8
10	The following low frequency parameters are given at 300° K, I _c =10mA, V _{ce} =8V, h _{ie} =500 Ω , h _{re} =10 ⁻⁴ , h _{fe} =100, h _{oe} =2*10 ⁻⁴ A/V. Calculate the values of hybrid- π parameters.	Evaluate	2,8