

MARRI LAXMAN REDDY

Institute of Technology & Management (Approved by AICTE, New Delhi & Affiliated JNTU, Hyderabad)

Dundigal, Quthbullapur (M), Hyderabad-500043.

Course Name	Antennas and Wave Propagation (AWP)
Course Code	A50418
Class	III - B. Tech I-Sem
Branch	ECE
Year	2017 – 2018
Course Faculty	I ADUM BABU

SHORT ANSWER QUESTIONS

C		T	1	
S. N o	QUESTION	Blooms Taxonomy Level	Course Outcome	
	UNIT-I			
ANTENNA BASICS				
1	Define radiation pattern of an antenna?	Remembering	а	
2	Define Radiation intensity?	Understanding	f	
	What are the differences between directive gain and power gain of		_	
3	antenna?	Remembering	f	
4	Define Beam width and directivity of antenna?	Understanding	f	
5	What are the different types of antenna apertures?	Remembering	f	
6	What is meant by effective height of an antenna?	Understanding	f	
7	Define beam area?	Understanding	g	
8	Define power gain of antenna?	Understanding	g	
9	Define directive gain of antenna?	Understanding	е	
10	What is meant by directivity of antenna?	Understanding	е	
	What are the different lobes of principle radiation pattern of			
11	antenna?	Understanding	h	
12	Define beam efficiency?	Understanding	f	
13	Define antenna efficiency?	Analysis	f	
14	What is meant by isotropic radiator?	Understanding	g	
15	What is meant by reciprocity Theorem?	Understanding	g	
16	Define scattering aperture of an antenna?	Understanding	е	
17	Define physical aperture of an antenna?	Application	е	
18	Define effective aperture of antenna?	Understanding	е	
19	Draw radiation pattern of small dipole antenna?	Understanding	h	
20	Define half power beam width and first null beam width?	Remembering	С	
21	Define beam solid angle of an antenna?	Understanding	е	
22	Draw radiation pattern of dipole antenna?	Understanding	h	
23	What is the relation ship between beam area and directivity?	Remembering	С	
24	Draw principle radiation pattern of antenna?	Understanding	h	
	What is the relation ship between half power beam width and first			
25	null beam width?	Remembering	С	
	UNIT-II	<u> </u>		
	VHF,UHF MICROWAVE ANTENNAS-1	1	1	
1	Define parasitic element	Remembering	f	
2.	What are the Advantages of folded dipole?	Analysis	f	
3	How impedance can be increased by folded dipole	Understanding	f	
4				
4	What is Application of folded dipole?	Understanding	f	
5	Compare half wave dipole & folded dipole?	Analysis	f	
6	Define basic yagi uda antenna	Analysis	g	
7	What are the characteristics of Yagi uda antenna?	Understanding	g	
	What is optimum spacing between parasitic elements of yagi uda			
8	antenna	Understanding	е	

9	What is a normal mode of helix antenna?	Remembering	е
10	What is a axial mode of helix antenna?	Analysis	h
11	How gain is improved in normal mode of helical antenna	Understanding	f
12	What are disadvantages of normal mode of helical antenna	Remembering	f
13	List the applications of helical antenna?	Understanding	g
14	What are different transmission modes of helix	Remembering	g
15	How the axial mode is improved?	Understanding	e e
13	What are the parameters to be considered for the design of a	onderstanding	
16	helical antenna?	Remembering	е
17	Define horn antenna	Understanding	е
18	What are different types of horn antennas	Understanding	h
19	What are the advantages horn antennas?	Understanding	а
20	How beam width and directivity is increased in horn antennas	Understanding	f
21	Define E-plane sectorial horn antenna.	Remembering	е
22	Define H-plane sectorial horn antenna	Understanding	е
23	Define pyramidal horn antenna	Understanding	h
24	Define conical horn antenna	Understanding	а
25	Write fermats principle	Understanding	f
	UNIT-III VHF, UHF AND MICROWAVE ANTENNAS - II		
1	What are the features of micro strip antennas?	Understanding	f
2	What are the limitations of strip antennas?	Remembering	' f
3	What are the different types of reflector antennas?	Remembering	f
4	What is mean by spill over?	Understanding	f
5	Define F/D ratio?	Understanding	f
6	What are the advantages of parabolic reflector antenna?	Understanding	g
7	What advantages of parabolic reflector unterma. What advantages of micro strip antennas?	Remembering	g g
8	What are the drawbacks of parabolic reflector antenna?	Remembering	e
9	What are the characteristics of micro strip antennas?	Remembering	e
10	What are different feed methods of parabolic reflectors	Understanding	<u>c</u> h
1	what are different reed methods of parabolic reflectors		
			f
	What are different types of reflectors		
11		Remembering	f
	What are differences between corner reflector antenna flat reflector		
12	antennas	Understanding	σ
12	What are different types of feeds used in parabolic reflectors	Onderstanding	<u> </u>
13	what are afferent types of reeds used in parabolic reflectors	Remembering	g
	Define zoning of lens antenna		
14		Understanding	е
1.5	Define spill over and back lobe energy	Damanahanina	
15	What are differences between metallic and non metallic lens	Remembering	е
	antennas		
16	antennas	Understanding	е
	What are different types zoning in lens antenna	5	-
17		Understanding	h
	What are different types of lens antennas		
18	List and different trops of feeds word in the month discussion of	Understanding	a
19	List out different types of feeds used in the parabolic reflectors	Understand	ing
-	Difference between corner reflector and parabolic reflector antennas	2 11001014110	
20	,	Understanding	е

21		Understanding	h
	how dielectric substrate controls the bandwidth of micro strip		
22	antenna	Undorstandina	
22	UNIT-IV	Understanding	a
	ANTENNA ARRAYS		
1	What are Hansen wood yard conditions	Remembering	F
2.	How directivity of end fire array is increased?	Analysis	F
3	Distinguish broad side and end fire arrays	Understanding	f
4	Draw the radiation pattern of end fire array	Understanding	f
5	Draw the radiation pattern of broad side array	Analysis	f
6	what are the differences between antenna gain measurement methods	Analysis	g
_	write friss transmission formulae and distance required for		
7	uniform fields	Understanding	g
8	List out different methods for measuring antenna gain	Understanding	e
9	Define radiation pattern of an antenna	Remembering	e
10	List out different methods using for measuring antenna impedance	Analysis	h
11	Define antenna array factor	Understanding	f
	List out the expression of beam width for broad side array and end		
12	fire array	Remembering	f
13	What is the need for the Binomial array	Understanding	g
14	Differentiate broad side and End fire array?	Remembering	g
15	Define beam width of major lobe?	Understanding	e
16	What is Broad side array?	Remembering	e
17	Define End fire array?	Understanding	e
18	What is meant by antenna array?	Understanding	h
19	Define phase arrays	Understanding	a
20	Define scanning array	Understanding	f
	UNIT-V WAVE PROPAGATION		
1	What is meant by fading?	II. done	ſ
l	What is the structure of atmosphere?	Understanding	f
2	<u> </u>	Remembering	f
3	What is the structure of ionosphere?	Remembering	g
	Write the relationship between Skip distance, MUF and critical frequency		
4		Understanding	g
5	Write the relationship between MUF and critical frequency?	Understanding	e

	what are the different modes of propagation		
6	what is the refractive index of ionosphere?	Understanding	e
7	what is the remactive mack of follosphere.	Remembering	h
	Define virtual height?	Tromosing .	
8	What are the types of fading?	Remembering	f
9	3	Remembering	f
	What is meant by Surface Wave?		
10		Understanding	G
11		Understanding	g
12		Understanding	e
13	What are different types of wave propagation List out different layers of ionosphere	Understanding	e
14		Remembering	h
15 16	Define skip distance of ionospheric propagation?	Remembering Remembering	f
17	Define critical frequency of ionospheric propagation?	Remembering	e
18		Remembering	h
19	Define LUF of ionospheric propagation? What are the different layers of ionosphere	Remembering	f
20		Remembering	f

LONG ANSWER QUESTIONS

S.NO	QUESTION	Blooms	Course
		taxonomy	outcome
	UNIT-I		
	ANTENNA BASICS		
1	Explain the retarded vector potential in detail?	Remembering	f

2	Derive an expression for the power radiated by the current element and calculate the radiation resistance ?	Understanding	f
3	Derive an expression for the far field component of a half wave dipole of an antenna	Remembering	f
4	Derive the total power radiated by half wave dipole?	Understanding	f
5	Show that the radiation resistance of a half wave dipole is 730hms?	Understanding	f
6	Derive an expression for the far field components of a short		
	dipole antenna	Understanding	g
7	Derive the total power radiated by short dipole?	Understanding	g
8	Explain about quarter wave monopole antenna	Understanding	е
9	Explain about beam area and directivity of antenna and derive		
	the relationship between them	Understanding	е
10	Explain about different antenna apertures	Understanding	h
11	Derive the relationship between effective aperture and directivity		
	of antenna	Analysis	f
12	Explain about effective heights of transmitting and receiving		
	antennas	Understanding	f
13	Calculate the maximum effective apertures for half wave dipole		
	and short dipole antennas	Understanding	g
14	Prove that effective lengths of transmitting and receiving		
	antennas are same	Understanding	g
15	Prove that antenna impedances of transmitting and receiving		
	antennas are same	Application	е
16	Derive the expression for far field pattern of small loop antenna	Remembering	е
17	Prove that short magnetic dipole is equivalent to a small loop		
	antenna	Understanding	е
		 	
18	Derive the expression for radiation resistance of general loop		
18	Derive the expression for radiation resistance of general loop antenna	Understanding	h
18		Understanding	h
	antenna	Understanding Remembering	h
	antenna Derive the expression for radiation resistance of small loop		

21	Derive the expression for power radiated from small loop		
	antenna	Understanding	a
22	Explain about different gains of antenna	Understanding	F
23	Derive an expression for directivity of small current element	Understanding	a
24	Find solid angle on a spherical surface between θ =20°, θ =40° and ϕ =30°, ϕ =70°	Understanding	a
25	An antenna has a field pattern $E_{\theta}\text{=}\text{COS}^2\theta$ for 0<0<90°,find half beam width	Understanding	f
26	An antenna has a field pattern $E_{\theta}\text{=}COS\theta COS2\theta$ for $0\text{<}\theta\text{<}90^{\circ}\text{,find}$ out first null beam width	Understanding	а
27	An antenna has Ri=10 Ω power gain of 20 and directive gain is 22 Calculate Rr	Remembering	F
28	An antenna has Ri=10 Ω and Rr=75 Ω calculate antenna efficiency.	Understanding	a
29	The radiation resistance of antenna is 720hm and loss resistance is 8 ohm. Calculate directivity if power gain is 16	Understanding	F
30	Calculate the gain of an antenna with circular aperture of diameter 3 m with a frequency of 5Ghz assume antenna is lossless	Understanding	а
	UNIT-II VHF,UHF MICROWAVE ANTENNAS-1		
1	With a suitable diagram, discuss the construction and operation of a Yagi uda antenna?	Understanding	f
2.	Explain in detail the working principle of Helical antenna in Normal mode	Understanding	g
3	Explain in detail the working principle of Helical antenna in Axial mode	Understanding	g
4	Explain the principle of operation and applications of folded dipoles?	Remembering	e
5.	Derive the expression for gain of an array of driven and parasitic element	Understanding	е
6.	Explain the transmission modes and applications of helical antenna	Remembering	е
7	Explain different types of horn antenna	Understanding	h
8.	Derive an expression for L and $\boldsymbol{\theta}$ of horn antenna	Understanding	a
9	Explain advantages and disadvantages of helical antennas	Understanding	а

10.	Explain about geometrical features of helical antenna	Understanding	f
11	If the length of E plane sectorial is 15 cm design the horn dimensions such that it is optimum at 10ghz	Understanding	е
12	Design Basic Yagi Uda antenna at a frequency of 30MHz?	understanding	h
13	Design 5 element Yagi – Uda antenna at a frequency of 300MHz?	understanding	а
14	Calculate in db the directivity of 20 turn helix, having α = 12 °, circumference equal to one wave length?	understanding	а
15	Calculate the power gain of optimum horn antenna approximately with a square aperture of 10λ on one side?	understanding	f
	UNIT-III ANTENNA BASICS		
1.	Explain the impact of different parameters on characteristics of micro strip antennas?	Understanding	е
2.	Derive an expression for gain of corner reflector antenna	Understanding	е
3	Explain about plain sheet reflector antenna	Remembering	е
4	Explain the operation of paraboloidal reflector antenna	Understanding	h
5	Derive an expression for F/D ratio of parabolic reflector antenna	Remembering	а
6	What are the advantages and limitations of strip antennas?	Understanding	f
7	What are the feed methods of rectangular strip antennas?	Understanding	h
8	What are the features of micro strip antennas?	Understanding	а
9	Explain feed methods of parabolic reflector in detail?	Understanding	f
10	Explain advantages and disadvantages of corner and flat sheet reflectors?	Remembering	f
11	Explain feed methods of parabolic reflector in detail?	Remembering	f
12	what are different types of zoning ? explain in detail	Understanding	f
13	Derive expression for refractive index of non metallic dielectric lens antenna	Remembering	f
14	Derive expression for refractive index of E plane metal plate lens antenna	Understanding	f
15	Explain about non metallic dielectric lens antenna	Understanding	f
16	Derive the expression for electric field strength of corner reflector antenna	Understanding	g
17	Drive the expression for F/D ratio of parabolic reflector antenna	Understanding	g
18	Explain advantages and disadvantages of corner and flat sheet reflectors	Understanding	e
19	With reference to paraboloids, explain the following:	Charlemanig	
17			
	ii. Front to Back Ratio.	Understanding	e

iii. Types of Feeds 20 A parabolic reflector of 1.8 m diameter is used at 6 GHZ calculate the beam width between first nulls and gain in db Understand	
the beam width between first nulls and gain in db Understand	
the beam width between first nulls and gain in db Understand	
	ling a
A parabolic reflector antenna with diameter 20 m, is designed to operate at frequency of 6GHz and illumination efficiency of 0.54.	
Calculate antenna gain? Understand	ling f
Calculate the angular aperture for a parabolic reflector antenna for which aperture number is (i) 0.25 (ii) 0.50 (iii) 0.60. Given the diameter of the reflector mouth is 10m; calculate the position of the focal point with reference the reflector mouth in each case? Understand	ling g
calculate the baem width between nulls of 2.5m paraboloid reflected used at 6ghz what will be the gain Understand	
Find out power gain in db of parabolidal reflector antenna whose open mouth aperture is10 Rememberi	
25 Estimate the diameter of a parabolic reflector required to produce	
a beam of 5° width at 1.2GHz. How would you make this	
reflector?	
Understand	ling g
UNIT-IV	
1 Draw the radiation pattern of broad side array of four isotropic	
sources separated by $\lambda/2$	
Understand	ling f
2 Explain about antenna gain measurement using direct	
comparison method Understand	ling g
3 Explain about antenna gain measurement using a) 2- antenna	
method b)3- antenna method Understand	ling g
4 Derive Friss transmission formulae Application	on e
5 Explain about antenna radiation pattern measurement Rememberi	
6 Explain different antenna impedance measurements methods Understand	
7 Derive the expression for distance requirement for uniform fields Understand	
8 Derive the expression for total electric field of array of two	
isotropic sources of equal amplitude and opposite phase and	
draw the radiation pattern Rememberi	ring a
9 Derive the expression for total electric field of array of two	
isotropic sources of equal amplitude and equal phase and draw	
the radiation pattern Understand	ling f
10 Explain about a) binomial arrays b) phase arrays Understand	ling a
11 Derive the expression for directivity of end fire array Understand	
Derive the expression for directivity of broad side array Understand	ling a
Draw the radiation pattern of eight isotropic sources separated by $\lambda/2$ using pattern multiplication principle Understand	ling f
Draw the radiation pattern of four isotropic sources separated by	
λ/2 using pattern multiplication principle Understand	ling g
15 Explain about a) broad side arrays b) end fire arrays	
Understand 16 Draw the radiation pattern of end fire array of four isotropic	ling g
Draw the radiation pattern of end fire array of four isotropic sources separated by $\lambda/2$ Rememberi	ing e
Design broad side array of 8 isotropic sources of $\lambda/2$ space Understand	

between them. The pattern is to be optimum with side lobe level 26 db down to maximum lobe. Design a four element broad side array of N2 Space between elements. The pattern is to be optimum with side lobe level 19.1 db down to maximum lobe Understanding f Calculate the directivity of a given linear end fire array of 10 isotropic sources with a separation of N2 between them. Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of N2 between them. Understanding g Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of N2 between them. Understanding g Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of N2 between them. Understanding g Explain about different layers of ionosphere Explain about different layers of ionosphere Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path, skip distance and maximum usable frequency as applied to ionosphere propagation Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for field strength of a space signal Derive the expression for field strength of a space signal Describe about the Ground wave propagation Describe about the Ground wave propagation A high frequency radio link has to be established between two points on earth 200km and was a critical frequency of 6MHz calculate the MUF for the given path Explain the terms sky wave ground wave and ionospheric Propagation Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency of 6MHz calculate the MUF				
elements. The pattern is to be optimum with side lobe level 19.1 db down to maximum lobe 19		· · · · · · · · · · · · · · · · · · ·		
db down to maximum lobe 19 Calculate the directivity of a given linear end fire array of 10 isotropic sources with a separation of 1/2 between them. 20 Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of 1/2 between them. 20 Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of 1/2 between them. 20 Understanding g Explain about different layers of ionosphere 1. Space wave propagation. Explain the process of radio wave propagation via ionosphere Remembering e Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Explain the effect of atmosphere on space wave propagation Understanding f Explain the effect of atmosphere on space wave propagation Understanding h Derive the expression for MUF for curved earth in sky wave Propagation Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for field strength of a space signal Remembering F Explain structure of ionosphere Understanding h Describe about the Ground wave propagation Remembering F What is virtual height ?Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same. What is Secant law? What is virtual height ?Derive the expression for inderstanding h Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300km	18	Design a four element broad side array of λ/2 Space between		
Calculate the directivity of a given linear end fire array of 10 isotropic sources with a separation of $\lambda/2$ between them. Calculate the directivity of a given linear end fire array of 10 isotropic sources with a separation of $\lambda/2$ between them. Understanding g UNIT-V 1. Describe the following: I.Space wave propagation. ii. Duct propagation. Explain about different layers of ionosphere Understanding e Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the process of radio wave propagation via ionosphere Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path, skip distance and maximum usable frequency as applied to ionosphere propagation Explain the effect of atmosphere on space wave propagation Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same Understanding A high frequency radio link has to be established between two points on earth 200Km away. The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHz calculate the MUF for the given path Two points on earth 200Km away. The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHz calculate the MUF for these two points if the height of ionospheric layer is a such as a critical frequency of 6MHz calculate the MUF for these two points if the height of ionospheric layer is a such as a critical frequency of 6MHz calculate the MUF for these two points if the height o		elements .The pattern is to be optimum with side lobe level 19.1		
Calculate the directivity of a given linear end fire array of 10 isotropic sources with a separation of 1/2 between them. Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of 1/2 between them. Understanding g UNIT-V 1. Describe the following:		db down to maximum lobe		
isotropic sources with a separation of \$\frac{\textit{3}}{2}\$ between them. Understanding g			Understanding	f
Calculate the directivity of a given linear broad side array of 10 Isotropic sources with a separation of 1/2 between them.	19	Calculate the directivity of a given linear end fire array of 10		
Calculate the directivity of a given linear broad side array of 10 isotropic sources with a separation of 1/2 between them. **UNIT-V** 1. Describe the following:		isotropic sources with a separation of $\lambda/2$ between them.		
Isotropic sources with a separation of \$\frac{1}{2}\$ between them. Understanding g			Understanding	g
1. Describe the following:	20		Understanding	σ
1. Describe the following:			Chacistananig	5
1. Space wave propagation. ii. Duct propagation. 2. Explain about different layers of ionosphere 3. Explain the process of radio wave propagation via ionosphere 4. Explain about a) Effect of the earth on radiation patterns b) 4. A tamospheric effects on radio waves 5. Explain the terms ray path ,skip distance and maximum usable 6. Explain the effect of atmosphere propagation 8. Explain the effect of atmosphere on space wave propagation 8. Derive the expression for MUF for curved earth in sky wave 9. Propagation 9. Derive the expression for MUF for flat earth in sky wave 9. Propagation 10. Obtain the expression for field strength of a space signal 11. Explain structure of ionosphere 12. Describe about the Ground wave propagation 13. Define to MUF and Critical frequency Derive the expressions for 14. What is virtual height? Derive the expression for the same 15. Explain the terms sky wave ,ground wave and ionospheric 16. Propagation 17. Two points on earth 200Km away .The reflection region of ionosphere 18. is a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path 18. Calculate the critical frequencies for F1,F2,e layers for which		01.22 ,		
2. Explain about different layers of ionosphere 3. Explain the process of radio wave propagation via ionosphere 4. Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves 5. Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation 6. Explain the effect of atmosphere on space wave propagation 7. Explain how propagation takes place through ionosphere 8. Derive the expression for MUF for curved earth in sky wave Propagation 9. Derive the expression for MUF for flat earth in sky wave propagation 9. Derive the expression for field strength of a space signal 10. Obtain the expression for field strength of a space signal 11. Explain structure of ionosphere 12. Describe about the Ground wave propagation 13. Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? 14. What is virtual height ?Derive the expression for the same 15. Explain the terms sky wave ,ground wave and ionospheric Propagation 16. A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path 17. Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km 18. Calculate the critical frequencies for F1,F2,e layers for which	1.	Describe the following:		
2. Explain about different layers of ionosphere 3		I.Space wave propagation. ii. Duct propagation.		
Explain the process of radio wave propagation via ionosphere Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Remembering Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Understanding Derive the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Explain tructure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height?Derive the expression for the same Understanding A high frequency radio link has to be established between two points on earth 200Km away. The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which			Understanding	e
Explain the process of radio wave propagation via ionosphere Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave propagation Derive the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Remembering Explain structure of ionosphere Describe about the Ground wave propagation Remembering Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height? Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation Define to MUF and Critical frequency Derive the same The propagation The propagation The propagation The propagation of ionosphere The propagation of the fire path of the given path of	2.	Explain about different layers of ionosphere	Understanding	e
Explain about a) Effect of the earth on radiation patterns b) atmospheric effects on radio waves Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Remembering Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Propagation Derive the expression for MUF for flat earth in sky wave propagation Dought the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding What is virtual height? Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	3	Explain the process of radio wave propagation via ionosphere	,	
atmospheric effects on radio waves Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Remembering Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave propagation Dotain the expression for flat earth in sky wave propagation Obtain the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	4			
Explain the terms ray path ,skip distance and maximum usable frequency as applied to ionosphere propagation Remembering Explain the effect of atmosphere on space wave propagation Derive the expression for MUF for curved earth in sky wave Propagation Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same Understanding Material frequency Derive the same Understanding f Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away. The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		'	Understanding	h
Explain the effect of atmosphere on space wave propagation Understanding f Explain how propagation takes place through ionosphere Understanding h Derive the expression for MUF for curved earth in sky wave Propagation Understanding a Derive the expression for MUF for flat earth in sky wave propagation Understanding f Derive the expression for MUF for flat earth in sky wave propagation Understanding f Describe about the expression for field strength of a space signal Remembering F Explain structure of ionosphere Understanding h Describe about the Ground wave propagation Remembering a Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding f What is virtual height? Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation Understanding a A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding Understanding Calculate the critical frequencies for F1,F2,e layers for which	5	Explain the terms ray path ,skip distance and maximum usable		
Explain the effect of atmosphere on space wave propagation Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave propagation Describe the expression for field strength of a space signal Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same What is virtual height ?Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		frequency as applied to ionosphere propagation		
Explain how propagation takes place through ionosphere Derive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave Propagation Derive the expression for field strength of a space signal Remembering F Explain structure of ionosphere Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same What is virtual height ?Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which				
Berive the expression for MUF for curved earth in sky wave Propagation Derive the expression for MUF for flat earth in sky wave propagation Derive the expression for MUF for flat earth in sky wave propagation Understanding f Dobtain the expression for field strength of a space signal Remembering F Explain structure of ionosphere Understanding h Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding f What is virtual height? Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away. The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding F Calculate the critical frequencies for F1,F2,e layers for which				
Propagation Understanding a Derive the expression for MUF for flat earth in sky wave propagation Understanding f Obtain the expression for field strength of a space signal Remembering F Explain structure of ionosphere Understanding h Describe about the Ground wave propagation Remembering a Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding f What is virtual height ?Derive the expression for the same Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		, , , , , , , , , , , , , , , , , , , ,	Understanding	h
9 Derive the expression for MUF for flat earth in sky wave propagation Understanding f 10 Obtain the expression for field strength of a space signal Remembering F 11 Explain structure of ionosphere Understanding h 12 Describe about the Ground wave propagation Remembering a 13 Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding f 14 What is virtual height ?Derive the expression for the same Understanding h 15 Explain the terms sky wave ,ground wave and ionospheric Propagation Understanding a 16 A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Remembering f 17 Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding 18 Calculate the critical frequencies for F1,F2,e layers for which	8		TT 1 . 1'	
propagation Understanding f 10 Obtain the expression for field strength of a space signal Remembering F 11 Explain structure of ionosphere Understanding h 12 Describe about the Ground wave propagation Remembering a 13 Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding f 14 What is virtual height ?Derive the expression for the same 15 Explain the terms sky wave ,ground wave and ionospheric Propagation Understanding a 16 A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path 17 Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km 18 Calculate the critical frequencies for F1,F2,e layers for which	0		Understanding	a
Obtain the expression for field strength of a space signal Remembering F	9	· · · · · · · · · · · · · · · · · · ·	I In denote a din c	C
Explain structure of ionosphere Understanding h	10		,	
Describe about the Ground wave propagation Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? Understanding Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which				
Define to MUF and Critical frequency Derive the expressions for the same. What is Secant law? What is virtual height ?Derive the expression for the same Understanding Independent of the same Understanding Indepndent of the same Understandin				
the same. What is Secant law? What is virtual height ?Derive the expression for the same Understanding h Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which			Remembering	a
What is virtual height ?Derive the expression for the same Understanding h Explain the terms sky wave ,ground wave and ionospheric Propagation Understanding a A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	13		Understanding	f
Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	14		Onderstanding	1
Explain the terms sky wave ,ground wave and ionospheric Propagation A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		What is the dar neight . Better the expression for the same	Understanding	h
A high frequency radio link has to be established between two points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	15	Explain the terms sky wave ,ground wave and ionospheric		
points on earth 200Km away .The reflection region of ionosphere is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		Propagation	Understanding	a
is at a height of 200Km and has a critical frequency of 6MHZ calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which	16	A high frequency radio link has to be established between two		
calculate the MUF for the given path Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		points on earth 200Km away .The reflection region of ionosphere		
Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Calculate the critical frequencies for F1,F2,e layers for which		, ,		
Two points on earth are 1500 km apart and are to communicate by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding 18 Calculate the critical frequencies for F1,F2,e layers for which		calculate the MUF for the given path		2
by means of HF for single hop transmission the critical frequency at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding 18 Calculate the critical frequencies for F1,F2,e layers for which	17	Two points on earth are 1500 km apart and are to communicate	Remembering	
at that time is 7MHZ and conditions are idealized calculate the MUF for these two points if the height of ionospheric layer is 300Km Understanding 18 Calculate the critical frequencies for F1,F2,e layers for which	1 /			Г
300Km Understanding 18 Calculate the critical frequencies for F1,F2,e layers for which		at that time is 7MHZ and conditions are idealized calculate the		
18 Calculate the critical frequencies for F1,F2,e layers for which			Understanding	
, ,, ,, ,, ,,	18		Onderstanding	
	10	· · · · · · · · · · · · · · · · · · ·		
per c.c respectively.				
Remembering h			Remembering	h

19	A high frequency radio link has to be established between points at a distance of 2500 km on earths surface considering the ionospheric height to be 200Km and its critical frequency 5 mhz		
	calculate the MUF for the given path.	Understanding	a
20	What is the critical frequency for reflection at vertical incidence if		
	the maximum value of electron density is 1.24x10 ⁶ cm ⁻³	Understanding	f