

MLRITM MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Outcome Based Education (OBE) Manual

Department of Electrical and Electronics Engineering

Contents

- 1. Vision, Mission, Quality Policy, Philosophy & Core Values 5
- Program Educational Objectives (PEOs) 6
 2.1Mapping of program educational objectives to program outcomes and program specific outcomes 7
- 3. Program Outcomes (POs) 8
- 4. Program Specific Outcomes (PSOs) 9
- 5. Relation between PEOs and POs-9
- 6. Relation between PSOs and PEOs-12
- Bloom's Taxonomy-12
 7.1 Incorporating Critical Thinking Skills into CO Statements-13
 7.2 Definitions of Thinking Skills in Bloom's Taxonomy-14
 7.3 Action Words Related to Critical Thinking-14
- Guidelines for Writing Course Outcomes (COs)-17 8.1 COs-17
 - 8.2 Developing COs-17
 - 8.3 Relationship of CO to PO-18
 - 8.4 Characteristics of Effective COs-19
 - 8.5 Examples of Effective COs-19
 - 8.6 CO-PO Articulation Matrix (CAM) Mapping-22
 - 8.7 Tips for Assigning Values in Mapping-24
 - 8.8 MethodforArticulation-24
- 9. Key Competencies for Assessing POs-25
- 10. Key Competencies for Assessing PSOs-32
- 11. Pos and PSOs Attained through Course Modules-32
- 12. Methods for Measuring Learning Outcomes-36
 - 12.1 Continuous Internal Assessment (CIA)-37
 - 12.2 Semester End Examination (SEE)-37
 - 12.3 Laboratory and Project Work-37
 - 12.4 Course Exit Surveys-37
 - 12.5 Programme Exit Survey-37
 - 12.6 Alumni Survey-38
 - 12.7 Employer Survey-38
 - 12.8 Course Expert Committee-38
 - 12.9 Department Advisory Board-38
 - 12.10 Faculty Meetings-38
 - 12.11 Professional Societies-38
- 13. CO-Assessment Processes and Tools-39
 - 13.1 Direct Assessment-39
 - 13.2 Indirect Assessment-40
- 14. PO/PSO-Assessment Tools and Processes-41
- 14.1 PO Direct Attainment Calculation Rubric-42
- 15. CourseDescription-42 15.1CourseDescription-43

2

OVERVIEW

Outcome Based Education (OBE) is an educational model that forms the base of a quality education system. There is no single specified style of teaching or assessment in OBE. All educational activities carried out in OBE should help the students to achieve the set goals. The faculty may adapt the role of instructor, trainer, facilitator, and/or mentor, based on the outcomes targeted.

OBE enhances the traditional methods and focuses on what the Institute provides to students. It shows the success by making or demonstrating out comes using statements "able to do" in favor of students. OBE provides clear standards for observable and measurable outcomes.

National Board of Accreditation (NBA) is an authorized body for the accreditation of higher education institutions in India. NBA is also a full member of the Washington Accord. NBA accredited programs and not the institutions.

Higher Education Institutions are classified into two categories by NBA

Tier-1: Institutions consists of all IITs, NITs, Central Universities, State Universities and Autonomous Institutions. Tier-1 institution can also claim the benefits as per the Washington Accord.

Tier-2: Institutions consists of affiliated colleges of universities.

What is Outcome Based Education (OBE)?

Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stake holders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes.

Four levels of outcomes from OBE are:

- 1. Program Educational Objectives (PEOs)
- 2. Program Outcomes (POs)
- 3. Course Outcomes (COs)

Why OBE?

- 1. International recognition and global employment opportunities.
- 2. More employable and innovative graduates with professional and soft skills, social responsibility and ethics.
- 3. Better visibility and reputation of the technical institution among stakeholders.
- 4. Improving the commitment and involvement of all the stake holders.
- 5. Enabling graduates to excel in their profession and accomplish reater heights in their careers.
- 6. Preparing graduates for the leadership positions and challenging them and making them aware of the opportunities in the technology development.

Benefits of OBE

Clarity: The focus on outcome creates a clear expectation of what needs to be accomplished by the end of the course.

Flexibility: With a clear sense of what needs to be accomplished, instructors will be able to structure their lessons around the students' needs.

Comparison: OBE can be compared across the individual, class, batch, program and institute levels.

Involvement: Students are expected to do their own learning. Increased student's involvement allows them to feel responsible for their own learning, and they should learn more through this individual learning.

- · Teaching will become a far more creative and innovative career
- Faculty members will no longer feel the pressure of having to be the "source of all knowledge".
- Faculty members shape the thinking and vision of students towards a course.

India, OBE and Accreditation:

From 13 June 2014, India has become the permanent signatory member of the Washington Ac-cord Implementation of OBE in higher technical educational o started in India. The National Assessment and Accreditation Council (NAAC) and National Board of Accreditation (NBA) are the autonomous bodies for promoting global quality standards for technical education in India. NBA has started accrediting the programs running with OBE from 2013.

The National Board of Accreditation mandates establishing a culture of outcome-based education in institutions that offer Engineering, Pharmacy, and Management program Reports of outcome analysis help to find gaps and carryout continuous improvements in the education system of an Institute, which is very essential.

1. Vision, Mission, Quality Policy, Philosophy & Core Values

Vision

"To produce comprehensively trained, socially responsible, innovative electrical engineers and researchers of high quality who can contribute to the nation and global development."

Mission

- To provide an academic environment with a strong theoretical foundation and practical engineering skills.
- To experience interpersonal communication and teamwork along with emphasis on ethics, professional conduct, and critical thinking.
- The graduates will be trained to have successful engagement in research and development and entrepreneurship.

Quality Policy

Our policy is to nurture and build diligent and dedicated community of engineers providing a professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its practical application in all are as of the Institute.

Philosophy

The essence of learning lies in pursuing the truth that liberates one from the darkness of ignorance and Marri Laxman Reddy Institute of Technology and management firmly believes that education is for liberation.

Contained there in is the notion that engineering education includes all fields of science that plays a pivotal role in the development of world-wide community contributing to the progress of civilization. This institute, adhering to the above understanding, is committed to the development of science and technology in congruence with the natural environs. It lays great emphasis on intensive research and education that blends professional skills and high moral standards with a sense of individuality and humanity. We thus promote ties with local communities and encourage transnational inter actions in order to be socially accountable. This accelerates the process of transfiguring the students into complete human beings making the learning process relevant to life, instilling in them a sense of courtesy and responsibility.

CORE VALUES

EXCELLENCE: ALL ACTIVITIES ARE CONDUCTED ACCORDING TO THE HIGHEST INTERNATIONAL STANDARDS.

INTEGRITY: ADHERES TO THE PRINCIPLES OF HONESTY, TRUST WORTHINESS, RELIABILITY, TRANSPARENCY AND ACCOUNTABILITY.

INCLUSIVENESS: TO SHOW RESPECT FOR ETHICS, CULTURAL AND RELIGIOUS DIVERSITY, AND FREEDOM OF THOUGHT.

SOCIAL RESPONSIBILITY: **PROMOTES COMMUNITY ENGAGEMENT, ENVIRONMENTAL** SUSTAINABILITY, AND GLOBAL CITIZENSHIP. IT ALSO PROMOTES AWARENESS OF, AND SUPPORT FOR, THE NEEDS AND CHALLENGES OF THE LOCAL AND GLOBAL COMMUNITIES.

INNOVATION: SUPPORTS CREATIVE ACTIVITIES THAT APPROACH CHALLENGES AND ISSUES FROM MULTIPLE PERSPECTIVES IN ORDER TO FIND SOLUTIONS AND ADVANCE KNOWLEDGE.

2. Program Educational Objectives (PEOs)

Program Educational Objectives (PEOs) should be defined by the Head of the Department in consultation with the faculty members. PEOs are a promise by the department to the aspiring students about what they will achieve once they join the program. PEO assessment is not made compulsory by NBA as it is quite difficult to measure in the Indian context. NBA assessors usually do not ask for PEO assessment. PEOs are about professional and career accomplishment after 4 to 5 years of graduation. PEOs can be written from different perspectives like Career, Technical Competency, and Behaviour. While writing the PEOs, do not use technical terms as it will be read by prospective students who want to join the program. Three to five PEOs are recommended.

PEO 1 Success in Electrical Engineering:

To provide students with knowledge of Basic Sciences in general and Electrical and electronics Engineering to acquire the necessary skills for analysis and synthesis of problems in generation, transmission and distribution.

PEO 2 Industrial awareness and research:

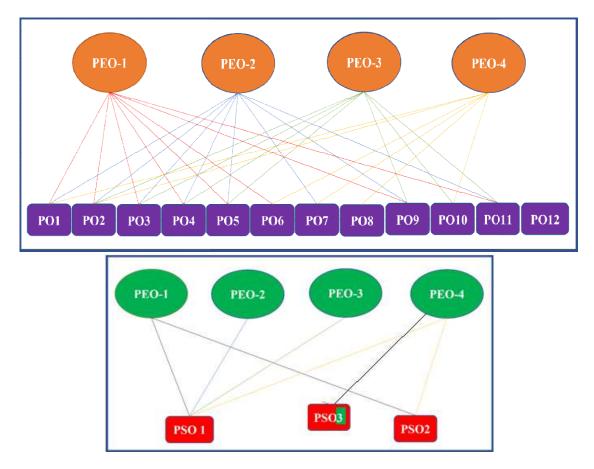
To provide technical knowledge and skills to identify, comprehend and solve complex tasks in industry and research and inspire the students to become future researchers / scientists with innovative ideas.

PEO 3 Successful employment and professional ethics:

To prepare the students for successful employment in various industrial and government organizations, both at the national and international level, with professional competence and ethical administrative acumen to handle critical situations and meet deadlines

PEO 4 Being a leader professional and societal environment:

To train the students in basic human and technical communication skills so that they may be both good team-members, leaders and responsible citizens.


2.1. Mapping of program educational objectives to program outcomes and program specific outcomes:

PEO-I PEO-II		PEO-III	PEO-IV	
PO: 1,2,3,4,5,6,9,11	PO: 1,2,3,4,5,7,9,11	PO: 2,3,4,5,9,10,11	PO: 1,2,6,7,8,10,	

The following Figure1 shows the correlation between the PEOs and the POs

FIGURE1: Correlation between the PEOs and the Pos

The following Figure2 shows the correlation between the PEOs and the PSOs

PEO-I	PEO-II	PEO-III	PEO-IV
PSO:1,2	PSO: 1	PSO: 1	PSO: 1,2,3

FIGURE2: Correlation between the PEOs and the PSOs

3. Program Outcomes (POs)

A Program Learning Outcome is broad in scope and describes what a student should be able to do at the end of the program. Pos are aligned with the graduate attributes specified in the **Washington Accord**. POs should be specific, measurable, and achievable.

The NBA has defined 12POs, which are common for all institutions in India.

In the syllabus book given to students, there should be a clear mention of **course objectives** and **course outcomes**, along with a **CO-PO course articulation matrix** for all the courses.

	B.Tech (EEE) – PROGRAM OUTCOMES(PO's)					
A gr	A graduate of the Electrical and Electronics Engineering Program will be demonstrated:					
	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO2	Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
PO3	Design/Development of Solutions: Design solutions for complex engineering					
	problems and design system components or processes that meet the specified needs					
	with appropriate consideration for public health and safety, as well as cultural,					
	societal, and environmental considerations.					
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods, including the design of experiments, analysis and interpretation of data, and synthesis of information, to provide valid conclusions.					
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, andmodernengineeringandITtoolsincludingpredictionandmodelingtocomplex engineering activities with an understanding of the limitations.					
PO6	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to professional engineering practice.					
PO7	Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate knowledge of and the need for sustainable development.					
PO8	Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of engineering practice.					
PO9	Individual and Teamwork: Function effectively as an individual, as well as a member or leader in diverse teams and multidisciplinary settings.					

PO10	Communication: Communicate effectively on complex engineering activities with				
	the engineering community and society at large. This includes the ability to				
	comprehend and write effective reports and design documentation, make effective				
	presentations, and give and receive clear instructions				
PO11	Project Management and Finance: Demonstrate knowledge and understanding of				
	engineering and management principles and apply these to one's own work as a				
	member and leader in a team to manage projects in multidisciplinary environments.				
PO12	Life-Long Learning: Recognize the need for, and have the preparation and ability to				
	engage in independent and life-long learning in the broadest context of technological				
	change.				

4. Program Specific Outcomes(PSOs)

Program Specific Outcomes (PSOs) are statements that describe what the graduates of a specific engineering program should be able to do.

A list of PSOs written for the Department of Mechanical Engineering is given below.

	B.Tech (EEE) – PROGRAMSPECIFICOUTCOMES(PSO's)						
A gradu	A graduate of the Electrical and Electronics Engineering Program will demonstrate:						
PSO1	Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization.						
PSO2	Focus on the components of electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and sustainable rural development.						
PSO3	Gain the hands-on competency skills and other computing tools necessary for entry level position to meet the requirements of the employer.						

5. Relation between the Program Educational Objectives and the POs

Broad relationship between the program objectives and the program outcomes is given in the following Table below:

	PEO's→ ↓PO's	(1) Success in Electrical Engineering	(2) Industrial awareness and research	(3) Successful employment and professional ethics	(4) Being a leader professional and societal environment
PO1	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).	3	1	1	1
PO2	Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences (Problem Analysis).	3	3	1	1
PO3	Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).	3	1	2	2
PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).	1	3	1	1
PO5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).	2	1	2	1
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).	1	1	2	3

PO7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).	1	1	1	3
PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).	1	1	3	2
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).	1	1	2	3
PO10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication).	1	1	2	3
PO11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance).	1	1	3	3
PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).		2	1	1

6. Relation between the Program Specific Outcomes and the Program Educational Objectives

	PEO's→ ↓PSO's	(1) Success in Electrical Engineering	(2) Industrial awareness and research	(3) Successful employment and professional ethics	(4) Being a leader professional and societal environment
PSO1	Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization.	3	2	1	1
PSO2	Focus on the components of electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and sustainable rural development.	2			2
PSO3	Gain the hands-on competency skills and other computing tools necessary for entry level position to meet the requirements of the employer.	2			2

Relationship between Program Specific Outcomes and Program Educational Objectives Key: 3=High; 2=Medium; 1=Low

Note:

- The assessment process of POs and PSOs can be direct or indirect.
- The direct assessment will be done through interim assessment by conducting continuous internal exam and semester end exams.
- The indirect assessment on the other hand could be done through student's program exit questionnaire, alumni survey and employment survey.

7. Blooms Taxonomy

Bloom's taxonomy is considered the global language for education. Bloom's Taxonomy is frequently used by teachers in writing course outcomes as it provides a ready-made structure and a list of action verbs. The stages ascend in complexity and what they demand of students.

First, students need to simply remember information provided to them—but reciting something doesn't demonstrate having learned it, only memorization. With understanding comes the ability to explain the ideas and concepts to others. The students are then challenged

to apply the information and use it in new ways, helping to gain a deeper understanding of previously covered material and demonstrating it moving forward.

Questioning information is a vital part of learning, and both analysis and evaluation do just this. Analysing asks a student to examine the information in a new way, and evaluation demands the student appraise the material in a way that lets them defend or argue against it as they determine.

The final step in the revised taxonomy is creating, which entails developing a new product or point of view. How does this learned information impact your world? How can it be used to impact not just your education but the way you interact with your surroundings? By utilizing Bloom's Taxonomy, students are not going to forget the information as soon as the class ends—rather, they retain and apply the information as they continue to grow as a student and in their careers, staying one step ahead of the competition.

7.1. Incorporating Critical Thinking Skills into Course Outcome Statements

Many faculty members choose to incorporate words that reflect critical or higher-order thinking into their learning outcomes statements. Bloom (1956) developed a taxonomy outlining the different types of thinking skills people use in the learning process. Bloom argued that people use different levels of thinking skills to process different types of information and situations. Some of these are basic cognitive skills (such as memorization) while others are complex skills (such as creating new ways to apply information). These skills are often referred to as critical thinking skills or higher-order thinking skills.

Bloom proposed the following taxonomy of thinking skills. All levels of Bloom's taxonomy of thinking skills can be incorporated into expected learning outcome statements. Recently, Anderson and Krathwohl (2001) adapted Bloom's model to include language that is oriented towards the language used in expected learning outcome statements. A summary of Anderson and Krathwohl's revised version of Bloom's taxonomy of critical thinking is provided in Figure3.

FIGURE3: Revised version of Bloom's taxonomy

7.2. Definitions of the different levels of thinking skills in Bloom's taxonomy:

Remember: Recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something but may not really understand it.

Understand – The ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.

Apply – Being able to use previously learned information in different situations or in problem-solving.

Analyse– The ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.

Evaluate – Being able to judge the value of information and/or sources of information based on personal values or opinions.

Create– the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts and ideas.

7.3.List of Action Words Related to Critical Thinking Skills

Here is a list of action words that can be used when creating the expected student learning outcomes related to critical thinking skills in a course. These terms are organized according to the different levels of higher-order thinking skills contained in Anderson and Krathwohl's (2001) revised version of Bloom's taxonomy.

Here is the revised Bloom's document with action verbs, which we frequently refer to while writing COs for our courses.

Lower Order of Thinking (LOT)			Higher Order of Thinking (HOT)			
Remember	Understand	Apply	Analyze	Evaluate	Create	
Interpreting	Recognizing	Executing	Differentiating	Checking	Planning	
Illustrating	(identifying)	Implementing	Organizing	(Coordinating)	Generating	
Classifying	Recalling		Attributing	detecting,	Producing	
Summarizing	(retrieving)			testing,	(constructing)	
Inferring				monitoring)		
(concluding)				Critiquing		
comparing				(judging)		
explaining						

The cognitive process dimensions - categories:

The Knowledge Dimension								
Concrete Knowledge→ Abstract knowledge								
Factual	Conceptual	Procedural	Meta cognitive					
 Knowledge of terminologies Knowledge of specific details and elements. 	 Knowledge of classifications and categories Knowledge of principles and generalizations Knowledge of theories, Models and structures 	 Knowledge of subject specific skills and algorithms Knowledge of subject specific techniques and methods Knowledge of criteria for determining when to use appropriate procedures 	 Strategic Knowledge Knowledgeaboutco gnitivetask,includin ggappropriateconte xtualandconditional Knowledge Self-Knowledge 					

Action Verbs for Course Outcomes

Lov	wer Order	of Thinking (LO	OT)	Higher Order of Thinking (HOT)		
Definitions	Remembe r	Understand	Apply	Analyze	Evaluate	Create
Bloom's Definitio n	Exhibit memory of previousl y learned material by recalling facts, terms, basic concepts, and answers.	Demonstrate understandin g of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and Stating main ideas.	Solve problems to new situations by applying acquired knowledg e, facts, technique s and rules in a different way.	Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations.	Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria.	Compile information to get her in a different way by combining elements in a new pattern or proposing alternative solution.
Verbs	 Choose Define Find How Label List Match Extend 	 Classify Compare Contrast Demonstrate Explain Illustrate Infer Interpret 	 Apply Build Choose Construct Develop Interviet W Maket Use of Model 	 Analyze Assume Categorize Classify Compare Discover Dissect Distinguish 	 Agree Appraise Assess Award Choose Criticize Decide Deduct Importance 	 Adapt Build Solve Choose Combine Invent Compile Compose Construct
Verbs	 Name Omit Recall Relate Select Show Spell Tell What When Where Which Who Why 	 Outline Relate Rephrase Show Summarize Translate Experiment with Illustrate Infer Interpret Outline Relate Rephrase 	 Organiz e Plan Select Solve Utilize Identify Intervie w Make use of Model Organiz e Plan 	 Divide Examine Function Inference Inspect List Motive Simplify Survey Take part in Test for Theme Conclusion Contrast 	 Defend Determine Disprove Estimate Evaluate Influence Influence Judge Justify Mark Measure Opinion Perceive Prioritize Prove 	 Create Design Develop Estimate Formulate Happen Imagine Improve Makeup Maximize Minimize Modify Original Originate

• Show	• Select	• Criteria	• Plan
• Summarize	• Solve	• Criticize	• Predict
Translate Experiment	UtilizeIdentify	CompareConclude	 Propose Solution
with			

8. Guidelines for writing Course Outcome Statements:

Well-written course outcomes involve the following parts:

- 1. Action verb
- 2. Subject content
- 3. Level of achievement as per BTL
- 4. Modes of performing task (if applicable)

8.1. Course Outcomes (COs)

A Course Outcome is a formal statement of what students are expected to learn in a course. When creating Course Outcomes, remember that the outcomes should clearly state what students will do or produce to determine and/or demonstrate their learning. Course learning outcome statements refer to specific knowledge, practical skills, areas of professional development, attitudes, higher-order thinking skills, etc., that faculty members expect students to develop, learn, or master during a course.

A well-formulated set of Course Outcomes will describe what a faculty member hopes to successfully accomplish in offering their particular course(s) to prospective students, or what specific skills, competencies, and knowledge the faculty member believes that students will have attained once the course is completed. The learning outcomes need to be concise descriptions of what learning is expected to take place by course completion.

8.2. Developing Course Outcomes

When creating course outcomes consider the following guide lines as you develop them either individually or as part of a multi-section group:

Limit the course outcomes to 5-6 statements for the entire course [more detailed outcomes can be developed for individual units, assignments, chapters, etc. if the instructor(s) wish(es)].

Focus on overarching knowledge and/or skills rather than small or trivial details. Emphasize knowledge and skills that are central to the course topic and/or discipline. Create statements that have a student focus rather than an instructor-centric approach.

(Example: **Student-focused outcome:** "Upon completion of this course, students will be able to list the names of the 28 states and 8 union territories."

Instructor-centric objective (to avoid): "One objective of this course is to teach the names of the 28 states and 8 union territories.").

Focus on the learning that results from the course rather than describing activities or lessons that are in the course.

Incorporate and/or reflect the institutional and departmental mission.

Include various ways for students to show success (e.g., outlining, describing, modelling, depicting, etc.) rather than using a single statement such as "At the end of the course, students will know" as the stem for each expected outcome statement.

When developing learning outcomes, here are the core questions to ask yourself:

- What do we want students in the course to learn?
- What do we want the students to be able to do?
- Are the outcomes observable, measurable, and able to be performed by the students?

Course outcome statements at the course level describe:

- What faculty members want students to know at the end of the course AND
- What faculty members want students to be able to do at the end of the course.

Course outcomes have three major characteristics:

- They specify an action by the students/learners that is **observable**.
- They specify an action by the students/learners that is **measurable**.
- They specify an action that is **done by the students/learners** rather than the faculty members.

Effectively developed expected learning outcome statements should possess all three of these characteristics.

When this is done, the expected learning outcomes for a course are designed so that they can be assessed. When stating expected learning outcomes, it is important to use verbs that describe exactly what the student(s)/learner(s) will be able to do upon completion of the course.

8.3. Relationship of Course Outcome to Program Outcome

Learning outcomes formula:

STUDENTS SHOULD BE ABLE TO+BEHAVIOR+RESULTING EVIDENCE

The Course Outcomes need to link to the Program Outcomes.

For example, you can use the following template to help you write an appropriate course level learning outcome.

"Upon completion of this course students will be able to (knowledge, concept, rule or skill you expect them to acquire) by (how will they apply the knowledge or skill/how will you assess the learning)."

8.4. Characteristics of Effective Course Outcomes

Well written course outcomes:

- Describe what you want your students to learning your course.
- Are aligned with program goals and objectives.
- Tell how you will know an instructional goal has been achieved.
- Use action words that specify definite, observable behaviors.
- Arrases able through one or more indicators (papers, quizzes, projects, presentations, journals, portfolios, etc.)
- Are realistic and achievable.
- Use simple language.

8.5 Examples of Effective Course Outcomes

After successful completion of the course, Students will be able to:

- Critically review the methodology of are search study published in a scholarly sociology journal.
- Design a web site using HTML and Java Script.
- Describe and present the contributions of women to American history.
- Recognize the works of major Re-naissance artists.
- Facilitating a group to achieve agreed Up on goals.
- Determine and apply the appropriate statistical procedures to analyze the results of simple experiments.
- Develop an individual learning plan for a child with a learning disability.
- Produce a strategic plan for a small manufacturing business.
- Analyze a character's motivation and portray that character before an audience.
- Differentiate among five major approaches to literary analysis.
- List the major ethical issues one must consider when planning a human-subjects study.
- Locate and critically evaluate information on current political issues on the Web.
- List and describe the functions of the major components of the human nervous system.
- Correctly classify rock samples found in...
- Conduct a systems analysis of a group interaction.
- Demonstrate active listening skills when interviewing clients.
- Apply social psychological principles to suggest solutions to contemporary social problems.

A more detailed model for stating learning objectives requires at objectives have three parts: a condition, an observable behavior, and a standard.

The table below provides three examples.

S. No	Condition	Observable Behavior	Standard
1	Given a list of drugs	The student will be able to classify each item as amphetamine or barbiturate.	With at least 70% ac- curacy
2	Immediately following a fifteen-minute discussion on a topic.	The student will be able to summarize in writing the major issues being discussed.	Mentioning at least three of the five major topics.
3	Given an algebraic equation with one unknown.	simple linear equation	Within a period of five minutes.

The following examples describe a course outcome that is not measurable as written, an explanation for why the course outcome is not considered measurable, and a suggested edit that improves the course outcome

Original course out- come	Evaluation of language used in this course outcome	Improved course outcome
Explore in depth the literature on an aspect of teaching strategies.	Exploration is not a measurable activity, but the quality of the product of exploration would be measurable with a suitable rubric.	Upon completion of this course, the students will be able to: write a paper based on an in- depth exploration of the literature on an aspect of teaching strategies.

Examples that are TOO general and VERY HARD to measure...

- ...will appreciate the benefits of learning a foreign language.
- ...will be able to access resources at the Institute library.
- ...will develop problem-solving skills.
- ...will have more confidence in their knowledge of the subject matter.

Examples that are still general and HARD to measure...

- ...will value knowing a second language as a communication tool.
- ...will develop and apply effective problem-solving skills that will enable one to adequately navigate through the proper resources within the institute library.
- ...will demonstrate the ability to resolve problems that occur in the field.
- ...will demonstrate critical thinking skills, such as problem-solving as it relates to social issues.

Examples that are SPECIFIC and relatively EASY to measure...

- ...will be able to read and demonstrate good comprehension of text in areas of the student's interest or professional field.
- ...will demonstrate the ability to apply basic research methods in psychology, including research design, data analysis, and interpretation.
- ...will be able to identify environmental problems, evaluate problem-solving strategies, and develop science-based solutions.
- ...will demonstrate the ability to evaluate, integrate, and apply appropriate information from various sources to create cohesive, persuasive arguments, and to propose design concepts.

An Introspection - Examine Your Own Course Outcomes

- If you have written statements of broad course goals, take a look at them. If you do not have a written list of course goals, reflect on your course and list the four to six most important student outcomes you want your course to produce.
- Look over your list and check the one most important student outcome. If you could only achieve one outcome, which one would it be?
- Look for your outcome on the list of key competencies or outcomes society is asking us to produce. Is it there? If not, is the reason a compelling one?
- Check each of your other "most important" outcomes against the list of outcomes. How many are on the list of key competencies?
- Take stock. What can you learn from this exercise about what you are trying to accomplish as a teacher? How clear and how important are your statements of outcomes for your use and for your students? Are they very specifically worded to

avoid misunderstanding? Are they supporting important needs on the part of the students?

Write Your Course Outcomes!

One of the first steps you take in identifying the expected learning outcomes for your course is identifying the purpose of teaching the course. By clarifying and specifying the purpose of the course, you will be able to discover the main topics or themes related to students' learning. Once discovered, these themes will help you to outline the expected learning outcomes for the course.

Ask yourself:

- What role does this course play within the program?
- How is the course unique or different from other courses?
- Why should/do students take this course? What essential knowledge or skills should they gain from this experience?
- What knowledge or skills from this course will students need to have mastered to perform well in future classes or jobs?
- Why is this course important for students to take?

8.5. CO-PO Course Articulation Matrix (CAM) Mapping

A **Course Articulation Matrix** shows the educational relationship (Level of Learning achieved) between course outcomes and program outcomes for a course. This matrix strongly indicates whether the students are able to achieve the course learning objectives. The matrix can be used for any course and is a good way to evaluate a course syllabus.

Table 1 provides information about the action verbs used in the Program Outcomes (POs) and the nature of POs, stating whether the POs are technical or non-technical.

You need to understand the intention of each PO and the **Bloom's Taxonomy level** to which each of the section verbs in the POs correlates. Once you have understood the POs, you can write the **Course Outcomes (COs)** for a course and see to what extent each of those COs correlates with the POs.

TABLE9: Process	for mapping	the values t	for CO-PO Matrix
-----------------	-------------	--------------	------------------

	PO1	Apply	L3	Bloom'sL1 to L4 for theory courses.	
	PO2	Identify	L2	Bloom'sL1 to L5 for laboratory	
	FO2	Formulate	L6	courses.	
		Review	L2	Bloom's L1 to L6 for	
		Design	L6	Project work, experiential learning	
	PO3	Develop	L3,L6		
		Analyze	L4		
	PO4	Interpret	L2,L3		
Technical		Design	L6		
		Create	L6		
	PO5	Select	L1,L2,L6		
		Apply	L3		
	PO6	Thumb Rule:			
	PO7	If Bloom's L1 Action Verbs of a CO: Correlates with any of			
Non-	PO8	PO6 to PO12, then assign 1.			
Technical	PO9	If Bloom's L2 to L3 Action Verbs of a CO: Correlates with			
	PO10	Any of PO6 to PO12, then assign 2.			
	PO11		ŕ	0	
	PO12	If Bloom's L4 to L6 Action Verbs of a CO: Correlates with any of			
		PO6 to PO12,	then assign 3		

At the end, the Program Outcomes (POs) can be calculated using various descriptors that you may define. The mapping of Course Outcomes (COs) towards a PO is evaluated using descriptors such as High, Medium, Low, etc.

Observations:

- 1. The first five Program Outcomes (POs) are purely technical in nature, while the other POs are non-technical.
- 2. For theory courses, while writing the Course Outcomes (COs), you need to restrict yourself between Bloom's Level 1 to Level 4. However, if it is a programming course, restrict yourself between Bloom's Level 1 to Level 3, but for other courses, you can go up to Bloom's Level 4.
- 3. For laboratory courses, while composing COs, you need to restrict yourself between Bloom's Level 1 to Level 5.
- 4. Only for mini-projects and main projects, you may extend up to Bloom's Level 6 while composing COs.

- 5. For a given course, the course in-charge must involve all other professors who teach that course and ask them to come up with the CO-PO mapping. The course in-charge must take the average value of all these CO-PO mappings and finalize the values. Alternatively, the course in-charge can proceed with what the majority of faculty members prefer. Ensure that none of the professors handling the course discuss with each other while marking the CO-PO values.
- 6. If you want to match your COs with non-technical POs, correlate the action verbs used in the COs with the thumb rule given in the table and map the values. (This applies only for mapping COs to non-technical POs).

8.6. Tips for Assigning the values while mapping Cos to POs.

- 1. Select action verbs for a Course Outcome (CO) from different Bloom's levels based on the importance of the particular CO for the given course.
- 2. Stick to a single action verb while composing COs, but you may use multiple action verbs if the need arises.
- 3. You need to justify the marking of values in the CO-PO articulation matrix. Use a combination of words found in the COs, POs, and your course syllabus for writing the justification. Restrict yourself to one or two lines.
- 4. Values for the CO-PO (technical POs in particular) matrix can be assigned by:
 (a) Judging the importance of the particular CO in relation to the POs. If the CO matches strongly with a particular PO criterion, assign 3; if it matches moderately, assign 2; if the match is low, assign 1; otherwise, mark with a "-" symbol.
 (b) If an action verb used in a CO appears at multiple Bloom's levels, then you need
 - to judge which Bloom's level is the best fit for that action verb.

8.7. Method for Articulation

- 1. Identify the key competencies of POs/PSOs for each CO and create a corresponding mapping table by assigning marks in the corresponding cell. One important observation is that the first five POs are purely technical in nature, while the other POs are non-technical.
- 2. Justify each CO-PO/PSO mapping with a justification statement and recognize the number of vital features mentioned in the justification statement that match the given Key Attributes for Assessing Program Outcomes. Use a combination of words found in the COs, POs/PSOs, and your course syllabus for writing the justification.
- 3. Create a table listing the number of key competencies for CO-PO/PSO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.
- 4. Create a table displaying the percentage of key competencies for CO-PO/PSO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.

- 5. Finally, prepare a Course Articulation Matrix (CO-PO/PSO Mapping) with COs and POs and COs and PSOs on a scale of 0 to 3, where:
 - 0 = No correlation (marked as "-")
 - 1 = Low/slight correlation
 - 2 = Medium/moderate correlation
 - 3 = Substantial/high correlation

The correlation is based on the following strategy:

Range (C%) Correlation Level

 $0 \le C \le 5\%$ No correlation (0)

5% < C \leq 40% Low/Slight correlation (1)

40% < C < 60% Moderate correlation (2)

 $60\% \le C < 100\%$ Substantial/High correlation (3)

9. Key Competencies for assessing Program Outcomes:

PO No.	NBA Statement/ Vital Features	Key Components	No. of Key Components
	Apply the knowledge of mathematics, science, engineering	1. Scientific Principles: Application of scientific principles and methodologies.	
PO1	fundamentals, and an engineering specialization to the	2. Mathematical Principles: Utilization of mathematical concepts in problem-solving.	
	solution of complex engineering problems (Engineering Knowledge).	3. Interdisciplinary Integration: Integration of knowledge from various engineering disciplines.	
	Kilowicuge).	4. Engineering Specialization: Application of specialized engineering knowledge in complex engineering problems.	

PO2.	Identify, formulate, review research literature, and analyze complex engineering problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences (Problem Analysis).	 Identity: Recognizing and defining complex engineering problems or opportunities. Formulate: Structuring and abstracting the problem for systematic analysis. Review: Examining research literature Analyze: Investigating problems using data collection and relevant methodologies. First Principles: Applying mathematical, natural, and engineering sciences in problem-solving. Substantiated Conclusions: Ensuring accuracy and reliability through validation. Experimental Design: Planning and conducting experiments or problem analysis. Solution Development: Implementing and testing solutions through experimentation. Interpretation: Evaluating results to draw meaningful engineering conclusions. Documentation: Recording findings systematically for future reference and learning. 	10
PO3.	Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).	 Design: Investigate and define a problem while identifying constraints, including environmental, sustainability, health, and safety considerations. Solutions: Understand customer and user needs while considering factors such as aesthetics. System Components: Identify and manage cost drivers in engineering solutions. Processes: Use creativity to develop innovative engineering solutions. Specified Needs: Ensure fitness for purpose across production, operation, maintenance, and disposal. 	10
		6. Public Health & Safety: Manage the	

			design process and evaluate outcomes for safety and risk assessment.	
		7.	Cultural Considerations: Understand the commercial and economic context of engineering processes.	
		8.	Societal Considerations: Apply management techniques to achieve engineering objectives in a broader context.	
			Environmental Considerations: Promote sustainable development through engineering activities. Appropriate Considerations: Beaware of legal frame works governing engineering activities, including personnel, health, safety, and environmental risks.	
PO4.	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the	1.	Research-Based Knowledge: Gain a deep understanding of materials, equipment, processes, and products through research to address engineering problems effectively.	10
	information to provide valid conclusions (Conduct Investigations of Complex Problems).	2.	Research Methods: Develop essential laboratory and workshop skills to carry out experimental investigations and gather reliable data.	
		3.	Design of Experiments: Address complex problems in various engineering contexts, including operations, management, and technology development.	
		4.	Analysis: Leverage technical literature and reliable information sources.	
		5.	Interpretation of Data: Follow appropriate codes of practice and industry standards when analyzing and interpreting experimental data.	
		6.	Synthesis: Ensure high-quality results by integrating various data sources and considering quality control during engineering investigations.	
		7.	Valid Conclusions: Draw valid conclusions by addressing technical uncertainties through sound reasoning	

		and scientific principles.	
		 Engineering Principles: Apply fundamental engineering principles to analyze and interpret key engineering processes and challenges. 	
		 Modelling Techniques: Use analytical and modeling techniques to identify, classify, and describe the performance of engineering systems and components. Quantitative Methods: Employ analytical software and quantitative methods efficiently and accurately. 	
PO5.	Create, select, and apply appropriate techniques, resources, and modern	1. Create: Develop engineering solutions using modern tools across various disciplines.	4
	Engineering and IT tools including prediction and modeling to complex	2. Select: Identify appropriate prediction and modeling tools for diverse engineering applications.	
	Engineering activities with an understanding of the limitations (Modern Tool Usage).	 Apply: Utilize IT tools in engineering analysis, design, and decision-making. Techniques: Implement simulation tools in different engineering fields. 	
PO6.	Apply reasoning informed by the contextual knowledge to assess societal,	1. Contextual Knowledge: Understand the commercial and economic context of engineering processes.	
100.	health, safety, legal and cultural issues and the consequent	2. Management Techniques: Apply management strategies in engineering objectives within this context.	
	responsibilities relevant to the professional engineering practice (The Engineer and	3. Sustainable Development: Promote sustainable development through engineering activities.	5
	Society).	4. Legal Awareness: Recognize relevant legal requirements governing engineering practices, including health, safety, and environmental risks.	
		5. Professional Ethics: Up hold high standards of professional and ethical conduct in engineering.	

PO7.	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).	 Socio-Economic Impact: Understand the socio-economic effects of engineering solutions on society. Political Impact: Recognize the political implications and responsibilities of engineering solutions. Environmental Impact: Assess the environmental consequences of engineering practices and solutions. Sustainability: Demonstrate the importance of sustainable development in engineering solutions. 	4
PO8.	Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).	 Ethical Judgement: Make informed decisions based on ethical principles, using professional codes of ethics to guide actions and evaluate the ethical aspects of practice. Integrity: Demonstrate a strong sense of trust and integrity, standing firm in one's values while acting responsibly and ethically. Fairness and Equity: Ensure fair treatment and equity in all professional activities, valuing diversity and respecting others' perspectives. Professional Responsibility: Adhere to the norms of engineering practice by committing to high ethical standards and demonstrating ethical behavior in all professional engagements. 	4
PO9	Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).	 Independence: Work effectively as an individual, taking ownership of tasks and driving progress independently. Maturity: Demonstrate maturity by focusing on goal achievement, requiring minimal external motivation. Self-Direction: Approach vaguely defined problems with systematic problem-solving skills to find solutions. Team Collaboration: Engage in team work during various activities, including hands-on labs and multidisciplinary projects. 	

		 Adaptability: Participate in diverse team settings, adjusting to different roles and projects such as mini projects and design tasks. Project Management: Understand and apply principles of team work and project management to effectively complete assignments and projects. Peer Evaluation: Contribute to team dynamics by valuating and reflecting on individual and group performance. 	
		 Building Relationships: Foster team work and lasting relationships ,contributing to both academic Success and post-graduation professional networks. 	
		 Organizational Integration: Collaborate with individuals across all level of an organization demonstrating adaptability and inter personal skills. Effective Communication: Develop strong relationships through positive interactions, show casing an ability to get along with other sand work cohesively in teams. 	
PO10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as ,being able to comprehend and write effective reports and design documentation ,make effective presentations ,and give and receive clear	 Clarity: Communicate complex engineering concepts clearly and concisely in written reports and design documentation. Grammar and Punctuation: Ensure high standards of grammar and punctuation in written communication, maintaining professionalism and clarity. References: Properly reference sources in written communication, ensuring accuracy and academic integrity. 	5
	instructions (Communication).	 4. Speaking Style: Deliver oral presentations effectively, with appropriate speaking style to engage the audience and convey technical information clearly. 5. Subject Matter: Demonstrate a deep 	
		understanding of the subject matter,	

		clearly communicating complex ideas during oral discussions and presentations.	
PO11	Demonstrate knowledge and understanding of the Engineering and management principles	1. Scope Definition: Define the project scope clearly to ensure alignment with objectives and requirements.	
	and apply the set one's own work, as a member and leader in a team, to	2. Critical Success Factors: Identify and prioritize critical success factors necessary for project completion and success.	10
	manage projects and in multi-disciplinary Environments (Project Management and	3. Deliverables: Ensure the timely delivery of project outputs, meeting the pre defined objectives and quality standards.	
	Management and Finance).	4. Work Breakdown Structure: Develop and organize a structured break down of tasks and activities to achieve project goals.	
		5. Scheduling: Create and manage schedules	
		to ensure tasks are completed on time and milestones are met.	
		6. Budget Management: Develop and manage project budgets, ensuring that resources are used efficiently and within financial constraints.	
		7. Quality Assurance : Apply quality control measures to ensure that project deliverables meet the required standards.	
		8. Human Resources Planning: Plan and allocate human resources effectively, ensuring the right skills and team dynamics.	
		 Stakeholder Management: Identify and manage stakeholders, ensuring their needs and expectations are addressed throughout the project. Risk Management: Develop a risk register and apply strategies to identify, assess, and mitigate project risks. 	
PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest	 Professional Certificate: Pursue professional, Academic, Global certifications. Advanced Education: Begin and work towards advanced programs to further 	
	context of technological	deepen knowledge.	

	(T. 10) T		
change	, U	3. Continuous Learning: Stay updated on	
Learning	j).	industry trends and emerging technologies	
		to remain relevant in the field.	
		4. Skill Acquisition: Learn atleast 2–3 new	8
		significant skills annually to ensure	0
		continuous growth and development.	
		č 1	
		5. Training Commitment: Dedicate time for	
		formal training for a standard duration of	
		training each year.	
		6. Personal Development: Engage in	
		ongoing self-improvement efforts to	
		enhance both personal and professional	
		· ·	
		growth.	
		7. Adaptability: Be adaptable to	
		technological changes by actively pursuing	
		new learning opportunities and challenges.	
		8. Networking: Build a network with	
		industry peers and professionals to stay	
		informed and grow knowledge through	
		collaboration.	

10. Key Competencies for Assessing Program Specific Outcomes:

PSO	NBA statement / Vital features	No. of vital features
PSO	 Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization. 1. Operate, control protect electrical power System. 2. Validate the interconnected power system. 3. Ensure reliable, efficient and compliant operation of electrical systems. 4. Familiarize the safety, legal and health norms in electrical system. 5. Adopt the engineering professional code and conduct 6. Sustainable and Compliant Design 	6

	electrical drives with its converter	
	rsion, management and auditing in	
	stry and sustainable rural development.	
	rives for renewable and non-renewable	
energy sources.		
	with various components and control	
topologies.		
	e procedure to examine electrical	
components/machine	es using software	
tools		10
1 · · · ·	yze energy flow, control and manage the	
power generation an		
	y, legal and health norms in electrical	
system.		
	g professional code and conduct.	
7. Explore autonomous		
8. Evolve into green en		
9. Realize energy polic		
10. Potential contributio	n of clean energy for rural development.	
PSO3 Gain the hands-on competer	cy skills and other computing tools	
necessary for entry level pos	ition to meet the requirements of the	
employer.		
1. Explicit software and	l programming tools for electrical	
systems.		
2. Adopt technical libra	ry resources and literature search.	
3. Model, program for	operation and control of electrical	8
systems.	_	
4. Constitute the system	ns employed for motion control.	
5. Interface automation	tools.	
6. Research, analysis, p		
7. Presentation using so	ftware aids.	
e e	nds-on skills to meet requirements of	
global environment.		

11. Program Outcomes and Program Specific outcomes Attained through course modules:

Courses offered in Electrical and Electronics Engineering Curriculum (MLRS-R20) and POs / PSOs attained through course modules for I, II, III, IV, V, VI, VII and VIII semesters.

Code	Subject	РО													PSO			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	I B.Tech I Semester																	
EE111	Engineering Mathematics-I (2010001)	1	1	1	1								~					

Engineering			
EE112 Chemistry 🖌 🖌			
(2020008)			
Communicative			
EE113English \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark			
(2020009)			
Programming for			
EE114 Problem solving $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$			\checkmark
(2010501)			
Engineering			
EE115 Chemistry Lab $\checkmark \checkmark$	1	\checkmark	
Lab(2020073)	•	•	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Programming for			
EE117 Problem Solving Lab \checkmark \checkmark \checkmark \checkmark			1
(2010571)			•
I B.Tech II Semester		1	1
Engineering			
EE121 Mathematics - II 🗸 🗸			
(2020002)			
EE122 Applied Physics $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$			
Basic Electrical			
EE123Engineering \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark		\checkmark	\checkmark
(2020201)			
Engineering			
EE124Workshop \checkmark \checkmark \checkmark \checkmark			\checkmark
(2020372)			
Engineering Drawing			
EE125 Practice(2010371) \checkmark \checkmark \checkmark			\checkmark
EE126 Applied Physics Lab $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$			
Basic Electrical			
Engineering \checkmark \checkmark \checkmark EE127 Workshop Lab \checkmark \checkmark \checkmark		1	\checkmark
Workshop Lab			
II B.Tech I Semester			
Laplace Transforms,			
EE211 Numerical Methods / / / / /			
& Complex Variables			
(2030003)			1

EE212	Network Analysis (2030204)	1	1	1	1										1	1
EE213	Electrical Machines-I (2030205)	1	1	1										1	1	1
EE214	Analog Electronics (2030402)	1	1	1	1										1	1
EE215	Data Structure (2030502)	1	1	1	1	1							1			1
EE216	Network Analysis Lab (2030274)	1	1	1	1	1								1	~	~
EE217	Analog Electronics Lab (2030484)	1	1			1									1	~
EE218	Data Structures Lab (2030572)	1	1	1	1	1							1			1
EE219	Environmental Science (2030321)						1	1	1							
]	II B	.Tec	h II	Sei	nest	er		1				1		
EE221	Electro Magnetic Fields (2040206)	✓	1	~	1									1		1
EE222	Electrical Machines-II (2040207)	✓	1	1	1									1	✓	1
EE223	Digital Electronics & IC Applications (2040407)	1	1	1							1				1	1
EE224	Signals & Systems (2040412)	1	1		1							~		1		1
EE225	Java Programming (2040509)	✓	1	1	1	1				1						1
EE226	Eletrical Machines-I Lab (2040275)	1	1							1	1			1	1	1

	Digital Electronics															
EE227	and IC Applications Lab (2040485)		1	1		1					1				1	1
EE228	Signals & Systems Lab (2040484)	1	1	1	1	~										1
EE229	Java Programming Lab (2040570)	✓	1	1	1	1										1
III B.Tech I Semester																
EE311	Power Systems-I (2050208)	1	1			1								1		1
EE312	Control Systems (2050209)	1	1	1	1						1		1	1	1	1
EE313	Microprocessors and Microcontrollers (2050403)	1	1	1		1										1
EE314	Python Programming (2050505)	1	1	1	1	1						1				1
EE315	Business Economics and Financial Analysis (2050010)		1		1		~					1	1			
EE316	DATABASE MANAGEMENT SYSTEMS (2050503)	✓	1	1		1										1
EE317	Electrical Machines-II Lab (2050276)	1	1			1				1				1	1	1
EE318	Microprocessors and Microcontrollers Lab (2050472)	1	1	1	1	1									1	1
EE319	Python Programming Lab (2050075)	1	1	1	1	1							1			1
		Ι	II E	B.Teo	ch I	I Se	mest	ter								
EE321	Power Systems-II (2060210)	1	1	1	1									1		1
EE322	Electrical Measurements & Instrumentation (2060211)	✓	1	1										1	1	1
EE323	Power Electronics (2060212)	✓	1	✓	1								1	1	1	1

EE324	Fundamentals Of Management (2060011)	1	1													
EE325	Remote Sensing & GIS (2060102)	1	1			1	1	1					1			
EE326	Renewable Energy Sources (2060216)	~	1	1								1		1	1	1
EE327	Control Systems Lab (2060277)	~	1	1	1	1									1	~
EE328	Electrical Systems Simulation Lab (2050278)	1	1							1				1		1
EE329	Advanced English Language and Communication Skills Lab (2060075)								1		1	1	1			
EE3210	Applications of AI (2060026)	1	1	1	1	1								1		1
			IV	B.Te	ech [I Se	mest	ter								
EE411	Switchgear & Protection (2070213)	1	1	~	~									~		1
EE412	Power System Operation & Control (2070214)	1	1	1	1									1	1	1
EE413	Power Semiconductor Drives (2070215)	1	1	1	1	1								1	1	✓
EE414	PE-II (Electrical Distribution Systems) (2070220)	1	1		1									1		1
EE415	PE-III (Flexible AC Transmission System) (2070224)	1	1	~	1	~								1	1	1
EE416	OE-III(Disaster Management) (2070103)	1	1	1	1	1							1			
EE417	Power Systems Lab (2070279)					1	1			1			1	1		✓
EE418	Electrical Measurements & Instrumentation Lab (2070280)	1	1			1				1				1	1	1

EE419	Power Electronics Lab (2070281)	1	1	1	1	1				1					1	~
EE4110	Industry Oriented Mini Project (2070051)	1	1	~	1	1		~		~	1	1		~	1	~
EE4111	PROJECT STAGE-I (2070052)	1	1	1	1	1	1	1		~	1	1		1	✓	✓
			IV	B.Te	ch l	II Se	emes	ster								
EE421	PE-IV (Power Quality) (2080226)	1	1	1	1									1	1	~
EE422	PE-V (HVDC Transmission) (2080233)	1	1	1	1									1	1	~
EE423	PE-VI (Estimation & Costing of Electrical Systems) (2080235)	1	1	1	1											~
EE424	Project Stage-II (2080053)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	~
EE425	Technical Seminar (2080054)	1	1	1	1	1	1	1	✓	1	1	1	1	1	1	

12. Methods for measuring Learning Outcomes and Value Addition:

There are many different ways to assess student learning. In this section, we present the different types of assessment approaches available and the different frameworks to interpret the results.

- i) Continuous Internal Assessment (CIA).
- ii) Semester end examination(SEE)
- iii) Laboratory and project work
- iv) Course exit survey
- v) Program / Student exit survey
- vi) Alumni survey
- vii) Employer survey
- viii) Course expert committee
- ix) Department Advisory Board
- x) Faculty meetings

The above assessment indicators are detailed below.

12.1. Continuous Internal Assessment (CIA)

Two Continuous Internal Examinations (CIEs) are conducted for all courses by the department. All students must participate in this evaluation process. These evaluations are critically reviewed by HOD and senior faculty and these sence is communicated to the faculty concerned to analyze, improve and practice so as to improve the performance of the student.

12.2. Semester End Examination (SEE)

The semester end examination is conducted for all the courses in the department. Before the Semester end examinations course reviews are conducted, feedback taken from students and remedial measures will be taken up such that the student gets benefited before going for end exams. The positive and negative comments made by the students about the course are recorded and submitted to the departmental academic council and to the principal for taking necessary actions to better the course for subsequent semesters.

12.3. Laboratory and Project Works

The laboratory work is continuously monitored and assessed to suit the present demands of the industry. Students are advised and guided to do project works giving solutions to research / industrial problems to the extent possible by the capabilities and limitations of the student. The results of the assessment of the individual projects and laboratory work can easily be conflated in order to provide the students with periodic reviews of their overall progress and to produce terminal marks and grading.

12.4. Course Exit Surveys

Students are encouraged to fill-out a brief survey on the fulfillment of course objectives. The data is reviewed by the concerned course faculty and the results are kept open for the entire faculty. Based on this, alterations or changes to the course objectives are undertaken by thorough discussions in faculty and meetings.

12.5. Programme / Student Exit Survey

The Program Exit Questionnaire is to be completed by all students leaving the institution. The questionnaire is designed to gather information from students regarding program educational objectives, overall program experiences, career choices, and any suggestions or comments for program improvement. The opinions expressed in the exit interview forms are reviewed by the Department Advisory Board (DAB) for potential implementation.

12.6. Alumni Survey

The survey gathers insights from former students of the department regarding their employment status, further education, perceptions of institutional emphasis, estimated gains in knowledge and skills, undergraduate involvement, and continued engagement with Marri Laxman Reddy Institute of Technology and Management. This survey is conducted every three years, and the collected data is analyzed for continuous improvement.

12.7. Employer Survey

The main purpose of this employer questionnaire is to know employers' views about the skills they require of employees compared to the skills actually possessed by them. The purpose is also to identify gaps in technical and vocational skills, determine the need for required training practices to fill these gaps, and establish criteria for hiring new employees. These employer surveys are reviewed by the College Academic Council (CAC) to modify the present curriculum to suit the requirements of the employer.

12.8. Course Expert Committee

The course expert team is responsible in exercising the central domain of expertise in developing and renewing the curriculum and assessing its quality and effectiveness to the highest of professional standards. Inform the Academic Committee the 'day-to-day' matters as are relevant to the offered courses. This committee will consider the student and staff feedback on the efficient and effective development of the relevant courses. The committee also review the course full stack content developed by the respective course coordinator.

12.9. Department Advisory Board

The Departmental Advisory Board (DAB) plays an important role in the development of the department. The department-level Advisory Board is established to provide guidance and direction for the qualitative growth of the department. The board interacts and maintains liaison with key stakeholders.

The DAB will monitor the progress of the program and develop or recommend new or revised goals and objectives for the program. Additionally, the DAB will review and analyse the gaps between the curriculum and industry requirements, providing necessary feedback or advice to improve the curriculum

12.10. Faculty Meetings

The DAB meets bi-annually for every academic year to review the strategic planning and modification of PEOs. Faculty meetings are conducted at least once in fortnight for ensuring the implementation of DAB's suggestions and guidelines. All these proceedings are recorded and kept for the availability of all faculties.

12.11. Professional Societies

The importance of professional societies like Society of Institute of Electrical and Electronics Engineers (IEEE), Institute of Electronics and Telecommunication Engineers (IETE) etc. are explained to the students and they are encouraged to become members of the above to carry out their continuous search for knowledge. Student and faculty chapters of the above societies are constituted for a better technical and entrepreneurial environment. These professional societies promote excellence in instruction, research, public service and practice.

13. CO-Assessment processes and tools:

Course outcomes are evaluated based on two approaches namely direct and indirect assessment methods. The direct assessment methods are based on the Continuous Internal Assessment (CIA) and Semester End Examination (SEE) where as the indirect assessment methods are based on the course end survey and program exit survey provided by the students, Alumni and Employer.

The weightage in CO attainment of Direct and Indirect assessments are illustrated in Table.

Assessment Method	Assessment Tool	Weightage in CO attainment
Direct Assessment	Continuous Internal Assessment (CIE & Assignment)	80%
	Semester End Examination	
Indirect Assessment	Course End Survey	20%

13.1. Direct Assessment:

Direct assessment methods are based on the student's knowledge and performance in various assessments and examinations. These assessment methods provide evidence that a student has command over a specific course, content, or skill. Additionally, they demonstrate that the student's work exhibits specific qualities such as creativity, analysis, or synthesis.

The various direct assessment tools used to assess the impact of the delivery of course content is listed in the table.

- Continuous internal examination, semester end examinations, Assignment (includes assignment, 5 minutes videos, seminars etc.) are used for CO calculation.
- The attainment values are calculated for individual courses and are formulated and summed for assessing the POs.
- Performance in Assignment is indicative of the student's communication skills.

S.I	lo Co	ourses	Components	Frequency	Max. Marks	Evidence
					Marks	

. .

		Continuous Internal Examination	Twice in a semester	20	Answer script
		Assignment	Twice in a semester	5	Video/Quiz/ assignment
1	Core/ Elective	Semester End Examination	Once in a semester	75	Answer script
		Conduction of experiment	Once in a week	3	Worksheets
		Observation	Once in a week	3	Worksheets
		Result	Once in a week	3	Worksheets
		Record	Once in a week	3	Worksheets
		Viva	Once in a week	3	Worksheets
2	Laboratory	Internal laboratory assessment	Once in a semester	10	Answer script
		Semester End Examination	Once in a semester	75	Answer script
		Presentation	Twice in a semester	25	Presentation
3	Project Work	Semester End Examination	Once in a semester	75	Thesis report
4	Comprehensive Examination	Oral examination	Once in a semester	50	Viva

13.2. Indirect Assessment:

Course End Survey-In this survey, questionnaires are prepared based on the level of understanding of the course and the questions are mapped to Course Outcomes. The tools and processes used in indirect assessment are shown in Table.

TABLE15: Tools used in Indirect assessment
--

Tools	Process	Frequency
	• Taken for every course at the end of the semester	
Course end survey	 Gives an overall view that helps to assess the extent of coverage / compliance of COs 	Once in a semester
	• Helps the faculty to improve upon the various teaching methodologies	

Direct Tools: (Measurable in terms of marks and w.r.t. CO) Assessment done by faculty at department level.

Indirect Tools: (Non measurable (surveys) in terms of marks and w.r.t.CO) Assessment done at institute level.

14. PO/PSO-Assessment tools and Processes

The institute has the following methods for assessing the attainment of POs/PSOs.

- 1. Direct method
- 2. Indirect method

The attainment levels of course outcomes help in computing the PO/PSO based upon the mapping done.

	Assessment	Tools	Weight
	Direct Assessment	CO attainment of anymou	900/
POs / PSOs	Direct Assessment	CO attainment of courses	80%
Attainment	Indirect	Student exit survey	
	Assessment	Alumni survey	2007
		Employer survey	20%

TABLE16: Attainment of PO / PSOs

The CO values of both theory and laboratory courses, with appropriate weightage as per CO-PO mapping, as per the Program Articulation Matrix, are considered for the calculation of direct attainment of PO/PSOs.

14.1. PO Direct Attainment is calculated using the following rubric:

PO Direct Attainment = (Strength of CO-PO) * CO attainment / Sum of CO-PO strength. The below figure represents the evaluation process of POs/PSOs attainment through course outcome attainment.

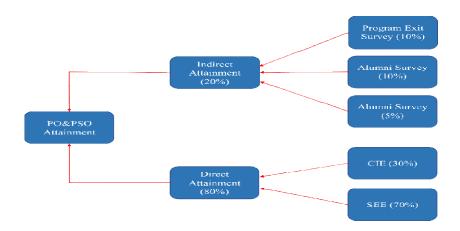


FIGURE4: Evaluation process of POs/PSOs attainment

15. Course Description:

The "Course Description" provides general information regarding the topics and content addressed in the course. A sample course description is given in Annexure – A for reference. The "Course Description" contains the following contents:

- Course Overview
- Prerequisite(s)
- Marks Distribution
- Content Delivery / Instructional Methodologies
- Evaluation Methodology
- Course Objectives
- Course Outcomes
- Program Outcomes
- Program Specific Outcomes
- How Program Outcomes are Assessed
- How Program Specific Outcomes are Assessed
- Mapping of each CO with PO(s), PSO(s)
- Justification for CO-PO/PSO Mapping Direct
- Total Count of Key Competencies for CO-PO/PSO Mapping
- Percentage of Key Competencies for CO–PO/PSO
- Course Articulation Matrix (PO/PSO Mapping)
- Assessment Methodology Direct
- Assessment Methodology Indirect
- Syllabus
- List of Textbooks / References / Websites

15.1 Course Description:

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956 ELECTRICAL ELECTRONICS ENGINEERING 1 Department 2 Course Name CONTROL SYSTEMS 3 Course Code 2050209 Year/Semester III/I 4 MLRS-R20 5 Regulation Structure of the 7 Theory Practical course Lecture Tutorials Practical Credit L Т Р С 3 0 0 3 0 0 0 0 8 Type of course BS HS ES PC PE CC MC OE х Х Х Х Х Х Х \checkmark 9 Course Offered Even Semester **Odd Semester** Х Total lecture, tutorial and practical hours for this course Offered (16 weeks of teaching per semester) 10 Lectures: 48 Hours Tutorials: 0 hours Practical: 0 hours 11 Course Coordinator **K.SRINIVAS** 12 Date Approved by BOS 07-01-2021 13 Course Webpage www.mlritm.ac.in/ 14 Level Course Code Semester Prerequisites Prerequisites/ I-I Engineering 2010001 Maths-I **Co-requisites** UG II-I 2030003 **LTNMCV**

MARRI LAXMAN REDDY

AND MANAGEMENT

15. Course Overview:

This course deals with a set of mechanical or electronic devices that regulates other devices or systems by way of control loops, basic concepts of block diagram reduction technique, time response analysis of first order and second order systems and frequency domain analysis. It elaborates the concept of stability and its assessment for linear time invariant systems. Control systems are a central part of production and distribution in many industries.

16. Course Objectives: The students will be able to :

- Understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response.
- Assess the system performance using time domain analysis and methods for improving it.
- Assess the system performance using frequency domain analysis and techniques for improving the performance.
- Design various controllers and compensators to improve system performance
- Analyze the stability of the closed and open loop systems.

17. Course Outcomes: After successful completion of the course, students should be able to:

CO1	Apply reduction techniques to develop transfer functions for dynamic system modelling and analysis.
CO2	Use time-domain analysis to predict transient response specifications and assess system stability.
CO3	Evaluate the stability of first and second-order systems using time-domain specifications.
CO4	Classify and analyze compensators in both time and frequency domains to enhance steady-state accuracy.
CO5	Interpret linear system equations in state-variable form for the analysis of system's dynamic behaviour.

18. Course Learning Outcome (CLOs):

S.no	Topic Name	CLO	Course Learning Outcome	Course	Blooms
		No		Outcome	Level
1	Classification of control systems	CLO 1	Ability to classify control systems and understand	CO1	Understand
			their types.		
2	Feedback and its effects	CLO 2	Describe how feedback influences system behaviour.	C01	Understand
3	Modelling of Electrical and Mechanical systems	CLO 3	Develop mathematical models for various electrical and mechanical systems.	CO1	Apply

4	Time response	CLO	Analyze time response of		
	Analysis	4	the first and second order	CO2	Analyze
			system		
5	Time domain	CLO	Describe and compute		
	specifications	5	time domain specifications	CO2	Understand
			for system responses.		
6	Steady state Analysis	CLO	Evaluate steady-state		
		6	performance and errors in	CO2	Evaluate
			control systems.		
7	stability	CLO	Understand and apply		
		7	concepts of system	CO3	Understand
			stability.		
8	Routh's stability	CLO	Use Routh's stability		
	Criterion	8	criterion to assess system	CO3	Apply
			stability.		
9	Root locus concept	CLO	Construct and interpret		
		9	root loci for system	CO3	Create
			analysis.		
10	Frequency domain	CLO	Understand and apply		Understand
	specifications	10	frequency domain	CO4	/ Apply
			specifications.		, i ppij
11	Bode plot	CLO	Create and interpret Bode	CO4	Analyze
		11	plots for system analysis.	001	1 11101 / 20
12	Compensator Design:	CLO	Design and implement lag,		
		12	lead, and lag-lead		
			compensators to meet	CO4	Create
			system performance		
			requirements.		
13	State space model	CLO	Understand and Analyze		
		13	state space models for	CO5	Analyze
			systems.		
14	State transition matrix	CLO	Derive and utilize state	CO5	Analyze
		14	transition matrices.	005	1 Mary2C
15	Concepts of	CLO	Assess and verify the	CO5	Analyze

Controllability and	15	controllability an	d
Observability		observability of contro	bl
		systems.	

19. Employability Skills:

Example: Technical Skills / Analytical and Problem-Solving Skills / Research and Development skills / Project Management Skills / Industry-Specific Knowledge / Hands-on Experience

These skills make graduates and professionals in control systems highly employable and capable of contributing to various industries such as renewable energy, automotive, industrial automation, aerospace, and consumer electronics.

20. Content Delivery / Instructional Methodologies:

~	Power Point Presentation	~	Chalk &Talk	~	Assignments	~	MOOC
~	() ALP	X	Seminars	X	Mini Project	x	Videos

21. Evaluation Methodology:

The performance of a student in a course will be evaluated for 100 marks each, with 30 marks allotted for CIE (Continuous Internal Evaluation) and 70 marks for SEE (Semester End-Examination).In CIE, for theory subjects, during a semester, there shall be two midterm examinations. Each Mid-Term examination consists of two parts i) **Part – A** for 10 marks, ii) **Part – B** for 15 marks with a total duration of 2 hours as follows:

Mid Term Examination for 30 marks:

- a. Part-A: Objective/quiz/short answer type paper for 10 marks.
- b. Part-B: Descriptive paper for 15 marks.

The average of two midterm examinations shall be taken as the final marks for midterm examinations.

The semester end examinations (SEE), will be conducted for 70 marks consisting of two parts viz.i) **Part-A** for 10marks, ii) **Part-B** for 60marks.

a. Part-A is a compulsory question which consists of ten sub-questions from all units carrying Equal marks.

- b. Part-B consists of five questions (numbered from 2 to 6) carrying 15 marks each. Each of these questions is from each unit and may contain subquestions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- c. The duration of Semester End Examination is 3 hours.

Table 1: Outline for Co	ontinues Interna	al Evaluation (O	CIE-I and CI	E-II) and SEI	Ξ

Activities	CIE-I	CIE-II	Average of CIE	SEE	Total Marks
Continues Internal Evaluation (CIE)	25Marks	25 Marks			
Objective / quiz / short answer Questions					Average of CIE + SEE
Assignment	5 Marks	5 Marks			
Total Marks	30 Marks	30 Marks	30 Marks	70 Marks	100 Marks

22. Course content - Number of modules: Five:

MODULE 1	Introduction to Control Systems: Classification of control systems. Feed-Back Characteristics, Effects of feedback - Mathematical Modelling of Electrical and Mechanical systems -Transfer function- Transfer function of Potentiometer, Synchro, AC servo motor, DC servo motor - Block diagram reduction techniques, signal flow graph, Mason's gain formula.	No. of Lectures: 10
MODULE 2	Time Domain Analysis: Standard test signals - Time response of first order systems - Transient response of second order system for unit step input, Time domain specifications - Steady state response - Steady state errors and error constants - Effects of P, PD, Pl and PID controllers.	No. of Lectures:10
MODULE 3	 Stability Analysis in S-Domain: The concept of stability – Routh's stability Criterion, Absolute stability and relative stability- limitations of Routh's stability. Root Locus Technique: The root locus concept - construction of root loci- Effects of adding poles and zeros on the root loci. 	No. of Lectures: 8
MODULE 4	 Introduction to frequency response - Frequency domain specifications - Bode plot - Stability analysis from Bode plots - Determination of transfer function from the Bode Diagram - Polar Plots, Nyquist Plots, Stability Analysis, Gain margin and phase margin. Control System Design: Introduction - Lag, Lead and Lag-Lead Compensator design in frequency Domain. 	No. of Lectures: 14
MODULE	State Space Analysis-Concepts of state, State variables and	No. of

5	state model, Derivation of state models of linear time	Lectures: 6
	invariant systems - Controllable, Observable and Diagonal	
	state models - State transition matrix - Solution of state	
	equation - Concepts of Controllability and Observability.	

TEXTBOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

REFERENCE BOOKS:

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 2. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009

ELECTRONIC RESOURCES:

- 1. https://archive.nptel.ac.in/courses/107/106/107106081/
- 2. https://www.electronicsforu.com/
- 3. https://www.classcentral.com/course/swayam-control-systems-13963

23. COURSE PLAN:

S.No.	Topics to be covered	Cos	Reference
1	Discussion on Outcome Based Education, CO, POs and PSOs	-	-
2	Classification of control systems	CO1	R2 :1.1
3	Feed-Back Characteristics, Effects of feedback	CO1	R2 :3.1-3.2
4	Mathematical modeling of Mechanical translational systems	CO1	T1:2.10
5	Mathematical modeling of Mechanical rotational systems	CO1	T1:2.10
6	Mathematical modeling of Electrical systems	CO1	T1:2.9
7	Transfer function of Potentiometer, Synchro	CO1	R2 :2.4
8	AC servo motor &DC servo motor	CO1	R2 :1.2
9	Block diagram reduction techniques	CO1	T1:3.2-3.3
10	Signal flow graph, Mason's gain formula.	CO1	T1:3.4
11	Standard test signals, Time response of first order systems	CO2	R2 :5.1-5.2
12	Time response of first order systems	CO2	T1:2.8
13	Response of Undamped second order system for step input	CO2	T1:2.8
14	Response of Under damped and Over damped second order system for step input	CO2	T1:2.8

15	Time domain specifications for second order systems	CO2	R2 :5.4
16	Problems on Time domain specifications	CO2	R2 :5.4
17	Steady state response - Steady state errors and error constants	CO2	T1:6.6
18	Problems on Steady state errors and error constants	CO2	R2 :5.5
19	Effects of P, PD controllers	CO2	T1:4.4,4.6
20	Effects of Pl and PID controllers	CO2	T1:4.5
21	The concept of stability	CO2	T1:5.1-5.2
22	Routh's stability Criterion	CO3	T1:5.4
23	Absolute stability and relative stability	CO3	R2 :6.3-6.5
2	Limitations of Routh's stability.	CO3	T1:5.5
25	The root locus concept	CO3	T1:7.2
26	The root locus concept	CO3	T1 :7.3-7.4
27	Problems on root locus	CO3	R2 :7.3
28	Effects of adding poles and zeros on the root loci	CO3	R2 :5.6
29	Introduction to Frequency response	CO4	T1:9.1
30	Frequency domain specifications	CO4	T1:9.2
31	Problems on Frequency domain specifications	CO4	T1:9.3
32	Bode plots	CO4	T1:8.5
33	Problems on Stability analysis from Bode plots	CO4	T1:8.6
34	Determination of transfer function from the Bode Diagram	CO4	T2:10.13
35	Polar Plots	CO4	T1:8.8
36	Problems on Polar Plots	CO4	T2:10.13
37	Nyquist Plots	CO4	T1:8.2
38	Problems on Nyquist Plots	CO4	T1:8.3
39	Stability Analysis, Gain margin and phase margin	CO4	T1:8.7
40	Lag Compensator design in frequency Domain	CO4	T1:10.4
41	Lead Compensator design in frequency Domain	CO4	T1:10.3
42	Lag-Lead Compensator design in frequency Domain	CO4	T1:10.5
43	Concepts of state, State variables and state model	CO5	T1:12.1
44	Derivation of state models of linear time invariant systems	CO5	T1:12.3
45	Diagonal state models	CO5	T1:12.5
46	State transition matrix	CO5	R1:12.4
47	Solution of state equation	CO5	T1:12.6
48	Concepts of Controllability and Observability	CO5	T1:12.7

24. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES:

PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, as well as cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods, including the design of experiments, analysis and interpretation of data, and synthesis of information, to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, andmodernengineeringandITtoolsincludingpredictionandmodelingtocomplex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to professional engineering practice.
PO7	Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate knowledge of and the need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of engineering practice.
PO9	Individual and Teamwork: Function effectively as an individual, as well as a member or leader in diverse teams and multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and society at large. This includes the ability to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
PO11	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work as a member and leader in a team to manage projects in multidisciplinary environments.
PO12	Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1	Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization.
PSO2	Focus on the components of electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and sustainable rural development.
PSO3	Gain the hands-on competency skills and other computing tools necessary for entry level position to meet the requirements of the employer.

25. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and engg. specialization to the solution of complex engineering problems.	3	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/
PO2	Problem analysis: Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.	3	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components, processes to meet the specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	CIE/PPT/ Objective / quiz /SEE/Assignments/ Viva-Voce/
PO4	Conduct investigations of complex problems: Use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/
PO10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication).	3	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/

PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).	3	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/
------	---	---	--

26. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PSO1	Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization	1	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce/
PSO2	Focus on the components of electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and sustainable rural development.	3	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce
PSO3	Gain the hands-on competency skills and other computing tools necessary for entry level position to meet the requirements of the employer.	1	CIE/PPT/ Objective / quiz /SEE/ Assignments/ Viva-Voce

3 = High; **2** = Medium; **1** = Low

27. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course					PS										
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1		\checkmark	\checkmark	\checkmark						\checkmark		\checkmark			
CO2	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark		\checkmark		\checkmark	~
CO3	\checkmark	\checkmark	\checkmark	\checkmark									 	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark										\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark										\checkmark	\checkmark	

28. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

Course Outcomes	PO'S/ PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
	PO1	 Application of scientific principles and methodologies. Utilization of mathematical concepts in problem-solving. Integration of knowledge from various engineering disciplines. 	3
	PO2	 Recognizing and defining complex engineering problems or opportunities. Structuring and abstracting the problem for systematic analysis. Examining research literature Investigating problems using data collection and relevant methodologies. Applying mathematical, natural, and engineering sciences in problem-solving. Ensuring accuracy and reliability through validation. Planning and conducting experiments for problem analysis. 	7
CO1	PO3	 Investigate and define a problem while identifying constraints, including environmental, sustainability, health, and safety considerations. Understand customer and user needs while considering factors such as aesthetics. Identify and manage cost drivers in engineering solutions. Use creativity to develop innovative engineering solutions. Ensure fitness for purpose across production, operation, maintenance, and disposal. 	5
	PO4	 Gain a deep understanding of materials, equipment, processes, and products through research to address engineering problems effectively. Develop essential laboratory and workshop skills to carry out experimental investigations and gather reliable data. Address complex problems in various engineering contexts, including operations, management, and technology development 	3

		1 0 1 1	
		1. Communicate complex engineering	
	PO10	concepts clearly and concisely in written	1
		reports and design documentation.	
		1. Pursue professional, Academic, Global	
		certifications.	
		2. Begin and work towards advanced	
	PO12	programs to further deepen knowledge in	3
	1012	engineering and related areas.	5
		3. Stay updated on industry trends and	
		emerging technologies to remain relevant	
		in the field.	
		1. Application of scientific principles and	
		methodologies.	
	PO1	2. Utilization of mathematical concepts in	3
	101	problem-solving.	5
		3. Integration of knowledge from various	
		engineering disciplines. 1. Recognizing and defining complex	
		engineering problems or opportunities.	
		 Structuring and abstracting the problem 	
		for systematic analysis.	
		3. Examining research literature	
		 Examining research interature Investigating problems using data 	
	DOD	collection and relevant methodologies.	7
	PO2	5. Applying mathematical, natural, and	7
		engineering sciences in problem-solving.	
		6. Ensuring accuracy and reliability through	
		validation.	
		7. Planning and conducting experiments for	
		problem analysis.	
		1. Investigate and define a problem while	
CO2		identifying constraints, including	
		environmental, sustainability, health, and	
		safety considerations.	
		2. Understand customer and user needs while	
		considering factors such as aesthetics.	
	PO3	3. Identify and manage cost drivers in	5
	105	engineering solutions.	J
		4. Use creativity to develop innovative	
		engineering solutions.	
		5. Ensure fitness for purpose across	
		production, operation, maintenance, and	
		disposal.	
		1. Gain a deep understanding of materials,	
		equipment, processes, and products	
		through research to address engineering	
		problems effectively.	2
	PO4	2. Develop essential laboratory and	3
		workshop skills to carry out experimental	
		investigations and gather reliable data.	
		3. Address complex problems in various	

		• • • • • • • •	
		engineering contexts, including operations,	
		management, and technology development	
		1. Communicate complex engineering	
	PO10	concepts clearly and concisely in written	1
		reports and design documentation.	
		1. Pursue professional, Academic, Global	
		certifications.	
	PO12	2. Begin and work towards advanced	2
		programs to further deepen knowledge in	
		engineering and related areas.	
		1. Control the electric drives for renewable	
		and non-renewable energy sources.	
		2. Fabricate converters with various	
		components and control topologies.	
		3. Synthesis, systematic procedure to	
	DCOO	examine electrical components/machines	F
	PSO2	using software tools	5
		4. Inspect, survey, analyze energy flow,	
		control and manage the power generation	
		and utilization.	
		5. Familiarize the safety, legal and health	
		norms in electrical system.	
		1. Explicit software and programming tools	
		for electrical systems.	
		2. Adopt technical library resources and	
		literature search.	
	PSO3	3. Model, program for operation and control	4
		of electrical systems.	
		4. Constitute the systems employed for	
		motion control.	
		1. Application of scientific principles and	
		methodologies.	
		2. Utilization of mathematical concepts in	
	PO1	problem-solving.	3
		3. Integration of knowledge from various	
		engineering disciplines.	
		1. Applying mathematical, natural, and	
		engineering sciences in problem-solving.	
		2. Ensuring accuracy and reliability through	
CO3		validation.	
_		3. Planning and conducting experiments for	5
	PO2	problem analysis.	5
		4. Implementing and testing solutions	
		through experimentation.	
		5. Evaluating results to draw meaningful	
		engineering conclusions	
		1. Investigate and define a problem while	
	DOJ	identifying constraints, including	7
	PO3	environmental, sustainability, health, and	7
		safety considerations.	

		2. Understand customer and user nee	de while
		2. Understand customer and user nee considering factors such as aesthet	
		3. Identify and manage cost dri	
		engineering solutions.	
		4. Use creativity to develop in engineering solutions.	novative
		5. Ensure fitness for purpose	across
		production, operation, maintenar	ice, and
		disposal.	
		6. Manage the design process and	
		outcomes for safety and risk assess 7. Understand the commercial and e	
		context of engineering processes.	
		1. Gain a deep understanding of m	
		equipment, processes, and	
		through research to address eng problems effectively.	ineering
		2. Develop essential laboratory	and and
		workshop skills to carry out expe	
		investigations and gather reliable d	
	P04	3. Address complex problems in	<i>E</i>
		engineering contexts, including op management, and tec	hnology
		development.	
		4. Leverage technical literature and	reliable
		information sources	
		5. Follow appropriate codes of prac industry standards when analyz	
		interpreting experimental data.	ing and
		1. Operate, control protect electrical j	oower
		System.	
	PSO1	 Validate the interconnected power Ensure reliable, efficient and control 	•
		operation of electrical systems.	Jiiphant
		1. Control the electric drives for re	newable
		and non-renewable energy sources	
	DCCC	2. Fabricate converters with components and control topologies	various
	PSO2	components and control topologies 3. Synthesis, systematic proced	e
		examine electrical components/n	
		using software tools.	
		1. Explicit software and programmi	ng tools
		for electrical systems. 2. Adopt technical library resource	ces and
	PSO3	literature search.	3
		3. Model, program for operation and	l control
		of electrical systems.	1
		 Application of scientific princip methodologies. 	ores and
CO4	PO1	2. Utilization of mathematical con-	cepts in 3
		problem-solving.	•

	3. Integration of knowledge from various	
	engineering disciplines.	
	1. Recognizing and defining complex	
	engineering problems or opportunities.	
	2. Structuring and abstracting the problem	
	for systematic analysis.	
PO2	3. Examining research literature	5
102	4. Investigating problems using data	
	collection and relevant methodologies.	
	5. Applying mathematical, natural, and	
	engineering sciences in problem-solving	
	1. Investigate and define a problem while	
	identifying constraints, including	
	environmental, sustainability, health, and	
	safety considerations.	
	2. Understand customer and user needs while	
	considering factors such as aesthetics.	
PO3	3. Identify and manage cost drivers in	5
	engineering solutions.	
	4. Use creativity to develop innovative	
	engineering solutions.	
	5. Ensure fitness for purpose across	
	production, operation, maintenance, and	
	disposal.	
	1. Gain a deep understanding of materials,	
	equipment, processes, and products	
	through research to address engineering	
	problems effectively.	
	2. Develop essential laboratory and	
	workshop skills to carry out experimental	
	investigations and gather reliable data.	
	3. Address complex problems in various	
	engineering contexts, including operations,	
	management, and technology	
	development.	
PO4	4. Leverage technical literature and reliable	7
104	information sources	/
	5. Follow appropriate codes of practice and	
	industry standards when analyzing and	
	interpreting experimental data.	
	6. Ensure high-quality results by integrating	
	various data sources and considering	
	quality control during engineering	
	investigations.	
	7. Draw valid conclusions by addressing	
	technical uncertainties through sound	
	reasoning and scientific principles.	
	1. Communicate complex engineering	
DOIO		
PO10	concepts clearly and concisely in written	1
	reports and design documentation	

	- <u> </u>		
	PO12	 Pursue professional, Academic, Global certifications. Begin and work towards advanced programs to further deepen knowledge in engineering and related areas. Stay updated on industry trends and emerging technologies to remain relevant in the field 	3
	PSO3	 Explicit software and programming tools for electrical systems. Adopt technical library resources and literature search. Model, program for operation and control of electrical systems. Constitute the systems employed for motion control. 	4
	PO1	 Application of scientific principles and methodologies. Utilization of mathematical concepts in problem-solving. Integration of knowledge from various engineering disciplines. 	3
	PO2	 Recognizing and defining complex engineering problems or opportunities. Structuring and abstracting the problem for systematic analysis. Examining research literature Investigating problems using data collection and relevant methodologies. Applying mathematical, natural, and engineering sciences in problem-solving. 	5
CO5	PO3	 Investigate and define a problem while identifying constraints, including environmental, sustainability, health, and safety considerations. Understand customer and user needs while considering factors such as aesthetics. Identify and manage cost drivers in engineering solutions. Use creativity to develop innovative engineering solutions. Ensure fitness for purpose across production, operation, maintenance, and disposal. 	5
	PSO1	 Control the electric drives for renewable and non-renewable energy sources. Fabricate converters with various components and control topologies. Synthesis, systematic procedure to examine electrical components/machines 	3

	using software tools	
	1. Control the electric drives for renewable	
	and non-renewable energy sources.	
	2. Fabricate converters with various	
	components and control topologies.	
	3. Synthesis, systematic procedure to	
DCOO	examine electrical components/machines	~
PSO2	using software tools	5
	4. Inspect, survey, analyze energy flow,	
	control and manage the power generation	
	and utilization.	
	5. Familiarize the safety, legal and health	
	norms in electrical system.	

29. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

G				PSOs											
Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
No .of key competencies	4	10	10	10	4	5	4	4	10	5	10	8	6	10	8
CO1	3	7	5	3	-	-	-	-	-	1	-	3	-	-	-
CO2	3	7	5	3	-	-	-	-	-	1	-	2	-	5	4
CO3	3	5	7	5	-	-	-	-	-	-	-	-	3	3	3
CO4	3	5	5	7	-	-	-	-	-	1	-	3	-	3	4
CO5	3	5	5	-	-	-	-	-	-	-	-	-	3	5	-

30. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO/ PSO):

					PSOs										
Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	75	70	50	30	-	-	-	-	-	20	-	37.5	-	-	-
CO2	75	70	50	30	-	-	-	-	-	20		25		50	50
CO3	75	50	70	50	-	-	-	-	-	-	-	-	50	30	37.5
CO4	75	50	50	70	-	-	-	-	-	20	-	37.5	-	30	50
CO5	75	50	50	-	-	-	-	-	-	-	-	-	50	50	-

31. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S, CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

0 - $0 \le C \le 5\%$ – No correlation,

2 - 40 % <C < 60% –Moderate

 $1-5 \le 40\% - Low/Slight$

3 - 60% \leq C < 100% – Substantial /High

				PR	OGR	AM (OUTO	СОМ	ES				PSOs		
Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	1						1		1			
CO2	3	3	2	1						1		1		2	2
CO3	3	2	3	2									2	1	1
CO4	3	2	2	3						1		1		1	2
CO5	3	2	2										2	2	
TOTAL	15	12	11	7						3		3	4	6	5
AVERAGE	3	2.4	2.2	1.75						1		1	2	1.5	1.66

32. ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE	✓	Seminars	-
Objective / quiz		Viva-		MOOCS	
	\checkmark	Voce/PPT			-
Assignments	\checkmark	Project	-		

33. ASSESSMENT METHODOLOGY INDIRECT:

Course End Survey (CES) \checkmark

Signature of Course Coordinator Name & Designation : K.SRINIVAS, Asst. Prof **HOD-EEE**